IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i23p13103-d688869.html
   My bibliography  Save this article

Sustainable Urban Delivery: The Learning Process of Path Costs Enhanced by Information and Communication Technologies

Author

Listed:
  • Francesco Russo

    (Dipartimento di Ingegneria dell’Informazione, delle Infrastrutture e dell’Energia Sostenibile, Mediterranea University of Reggio Calabria, 89100 Reggio Calabria, Italy)

  • Antonio Comi

    (Department of Enterprise Engineering, University of Rome Tor Vergata, 00133 Rome, Italy)

Abstract

Today, local administrations are faced with the presence of greater constraints in terms of the use of space and time. At the same time, large amount of data is available to fleet managers that can be used for controlling their fleets. This work is set in the context defined by sustainable city logistics, and information and communication technologies (ICTs), to formalize the three themes of the smart city (transport, ICTs and energy savings) in a single problem. Following this, the main purpose of the study is to propose a unified formulation of the basic problem of fleets, i.e., the traveling salesman problem (TSP), which explicitly includes the use of emerging information and communication technologies (e-ICTs) pointing out the learning process of path costs in urban delivery. This research explores the opportunity to extend the path cost formation with a within-day and day-to-day learning process, including the specification of the attributes provided by e-ICTs. As shown through a real test case, the research answers to queries coming from operators and collectivities to improve city liveability and sustainability. It includes both economic sustainability for companies/enterprises and environmental sustainability for local administrations (and collectivities). Besides contributing to reduce the times and kms travelled by commercial vehicles, as well as the interference of freight vehicles with other traffic components, it also contributes to road accident reduction (social sustainability). Therefore, after the re-exanimation of TSP, this paper presents the proposed unitary formulation and its benefits through the discussion of results obtained in a real case study. Finally, the possible innovation guided by e-ICT is pointed out.

Suggested Citation

  • Francesco Russo & Antonio Comi, 2021. "Sustainable Urban Delivery: The Learning Process of Path Costs Enhanced by Information and Communication Technologies," Sustainability, MDPI, vol. 13(23), pages 1-13, November.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13103-:d:688869
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/23/13103/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/23/13103/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Francesco Russo & Antonio Comi, 2020. "Investigating the Effects of City Logistics Measures on the Economy of the City," Sustainability, MDPI, vol. 12(4), pages 1-11, February.
    2. Dullaert, Wout & Zamparini, Luca, 2013. "The impact of lead time reliability in freight transport: A logistics assessment of transport economics findings," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 49(1), pages 190-200.
    3. Alejandro Toriello & William B. Haskell & Michael Poremba, 2014. "A Dynamic Traveling Salesman Problem with Stochastic Arc Costs," Operations Research, INFORMS, vol. 62(5), pages 1107-1125, October.
    4. Sánchez-Díaz, Iván & Holguín-Veras, José & Ban, Xuegang (Jeff), 2015. "A time-dependent freight tour synthesis model," Transportation Research Part B: Methodological, Elsevier, vol. 78(C), pages 144-168.
    5. Alexandros Nikitas & Kalliopi Michalakopoulou & Eric Tchouamou Njoya & Dimitris Karampatzakis, 2020. "Artificial Intelligence, Transport and the Smart City: Definitions and Dimensions of a New Mobility Era," Sustainability, MDPI, vol. 12(7), pages 1-19, April.
    6. Ennio Cascetta, 2009. "Transportation Systems Analysis," Springer Optimization and Its Applications, Springer, number 978-0-387-75857-2, December.
    7. Justin Fraselle & Sabine Louise Limbourg & Laura Vidal, 2021. "Cost and Environmental Impacts of a Mixed Fleet of Vehicles," Sustainability, MDPI, vol. 13(16), pages 1-16, August.
    8. Morten Eltved & Otto Anker Nielsen & Thomas Kjær Rasmussen, 2019. "An assignment model for public transport networks with both schedule- and frequency-based services," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 769-793, December.
    9. Ghiani, Gianpaolo & Guerriero, Francesca & Laporte, Gilbert & Musmanno, Roberto, 2003. "Real-time vehicle routing: Solution concepts, algorithms and parallel computing strategies," European Journal of Operational Research, Elsevier, vol. 151(1), pages 1-11, November.
    10. Carlos F. Daganzo, 2005. "Logistics Systems Analysis," Springer Books, Springer, edition 0, number 978-3-540-27516-9, October.
    11. Tarun Rambha & Stephen D. Boyles & S. Travis Waller, 2016. "Adaptive Transit Routing in Stochastic Time-Dependent Networks," Transportation Science, INFORMS, vol. 50(3), pages 1043-1059, August.
    12. Erdoğan, Sevgi & Miller-Hooks, Elise, 2012. "A Green Vehicle Routing Problem," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 100-114.
    13. Antonello Ignazio Croce & Giuseppe Musolino & Corrado Rindone & Antonino Vitetta, 2020. "Route and Path Choices of Freight Vehicles: A Case Study with Floating Car Data," Sustainability, MDPI, vol. 12(20), pages 1-15, October.
    14. Diego Cattaruzza & Nabil Absi & Dominique Feillet & Jesús González-Feliu, 2017. "Vehicle routing problems for city logistics," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 51-79, March.
    15. Luigi Ranieri & Salvatore Digiesi & Bartolomeo Silvestri & Michele Roccotelli, 2018. "A Review of Last Mile Logistics Innovations in an Externalities Cost Reduction Vision," Sustainability, MDPI, vol. 10(3), pages 1-18, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cesar Eduardo Leite & Sérgio Ronaldo Granemann & Ari Melo Mariano & Leise Kelli de Oliveira, 2022. "Opinion of Residents about the Freight Transport and Its Influence on the Quality of Life: An Analysis for Brasília (Brazil)," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    2. Gómez-Marín, Cristian Giovanny & Comi, Antonio & Serna-Urán, Conrado Augusto & Zapata-Cortés, Julián Andrés, 2024. "Fostering collaboration and coordination in urban delivery: a multi-agent microsimulation model," Research in Transportation Economics, Elsevier, vol. 103(C).
    3. Paulina Golinska-Dawson & Kanchana Sethanan, 2023. "Sustainable Urban Freight for Energy-Efficient Smart Cities—Systematic Literature Review," Energies, MDPI, vol. 16(6), pages 1-28, March.
    4. Olga Tzanni & Paraskevas Nikolaou & Stella Giannakopoulou & Apostolos Arvanitis & Socrates Basbas, 2022. "Social Dimensions of Spatial Justice in the Use of the Public Transport System in Thessaloniki, Greece," Land, MDPI, vol. 11(11), pages 1-26, November.
    5. Min Wu & Bingxin Yan & Ying Huang & Md Nazirul Islam Sarker, 2022. "Big Data-Driven Urban Management: Potential for Urban Sustainability," Land, MDPI, vol. 11(5), pages 1-16, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cesar Eduardo Leite & Sérgio Ronaldo Granemann & Ari Melo Mariano & Leise Kelli de Oliveira, 2022. "Opinion of Residents about the Freight Transport and Its Influence on the Quality of Life: An Analysis for Brasília (Brazil)," Sustainability, MDPI, vol. 14(9), pages 1-14, April.
    2. Antonello Ignazio Croce & Giuseppe Musolino & Corrado Rindone & Antonino Vitetta, 2021. "Estimation of Travel Demand Models with Limited Information: Floating Car Data for Parameters’ Calibration," Sustainability, MDPI, vol. 13(16), pages 1-23, August.
    3. Rafael Villa & Andrés Monzón, 2021. "Mobility Restrictions and E-Commerce: Holistic Balance in Madrid Centre during COVID-19 Lockdown," Economies, MDPI, vol. 9(2), pages 1-19, April.
    4. Adrian Serrano-Hernandez & Aitor Ballano & Javier Faulin, 2021. "Selecting Freight Transportation Modes in Last-Mile Urban Distribution in Pamplona (Spain): An Option for Drone Delivery in Smart Cities," Energies, MDPI, vol. 14(16), pages 1-17, August.
    5. Hao Jiang & Eric Ballot & Shenle Pan, 2019. "Modeling and analysis of alternative distribution and Physical Internet schemes in urban area [Modélisation et analyse de systèmes de distribution alternative et d'Internet physique en zone urbaine," Post-Print hal-02172073, HAL.
    6. Holden, R. & Xu, B. & Greening, P. & Piecyk, M. & Dadhich, P., 2016. "Towards a common measure of greenhouse gas related logistics activity using data envelopment analysis," Transportation Research Part A: Policy and Practice, Elsevier, vol. 91(C), pages 105-119.
    7. Hanna Vasiutina & Vitalii Naumov & Andrzej Szarata & Stanisław Rybicki, 2023. "Influence of Transport Demand Parameters on Environmental Pollution for Deliveries by Cargo Bikes in City Areas with Traffic Restrictions," Energies, MDPI, vol. 16(19), pages 1-18, September.
    8. Li, Hongqi & Liu, Yinying & Jian, Xiaorong & Lu, Yingrong, 2018. "The two-echelon distribution system considering the real-time transshipment capacity varying," Transportation Research Part B: Methodological, Elsevier, vol. 110(C), pages 239-260.
    9. Vitalii Naumov & Olha Shulika & Oleksandra Orda & Hanna Vasiutina & Marek Bauer & Myroslav Oliskevych, 2022. "Shaping the Optimal Technology for Servicing the Long-Distance Deliveries of Packaged Cargo by Road Transport," Sustainability, MDPI, vol. 14(12), pages 1-17, June.
    10. Lemardelé, Clément & Estrada, Miquel & Pagès, Laia & Bachofner, Mónika, 2021. "Potentialities of drones and ground autonomous delivery devices for last-mile logistics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    11. Marta Rojo, 2020. "Evaluation of Traffic Assignment Models through Simulation," Sustainability, MDPI, vol. 12(14), pages 1-19, July.
    12. Mohamed Amr Sultan & Tomaž Kramberger & Mahmoud Barakat & Ahmed Hussein Ali, 2023. "Barriers to Applying Last-Mile Logistics in the Egyptian Market: An Extension of the Technology Acceptance Model," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    13. Giulio Mangano & Giovanni Zenezini & Anna Corinna Cagliano, 2021. "Value Proposition for Sustainable Last-Mile Delivery. A Retailer Perspective," Sustainability, MDPI, vol. 13(7), pages 1-15, March.
    14. Emna Marrekchi & Walid Besbes & Diala Dhouib & Emrah Demir, 2021. "A review of recent advances in the operations research literature on the green routing problem and its variants," Annals of Operations Research, Springer, vol. 304(1), pages 529-574, September.
    15. Demostenis Ramos Cassiano & Bruno Vieira Bertoncini & Leise Kelli de Oliveira, 2021. "A Conceptual Model Based on the Activity System and Transportation System for Sustainable Urban Freight Transport," Sustainability, MDPI, vol. 13(10), pages 1-13, May.
    16. Gardner, Clara Brimnes & Nielsen, Sara Dorthea & Eltved, Morten & Rasmussen, Thomas Kjær & Nielsen, Otto Anker & Nielsen, Bo Friis, 2021. "Calculating conditional passenger travel time distributions in mixed schedule- and frequency-based public transport networks using Markov chains," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 1-17.
    17. Louis Faugère & Chelsea White & Benoit Montreuil, 2020. "Mobile Access Hub Deployment for Urban Parcel Logistics," Sustainability, MDPI, vol. 12(17), pages 1-22, September.
    18. Regal, Andrés & Gonzalez-Feliu, Jesús & Rodriguez, Michelle, 2023. "A spatio-functional logistics profile clustering analysis method for metropolitan areas," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    19. Bektaş, Tolga & Ehmke, Jan Fabian & Psaraftis, Harilaos N. & Puchinger, Jakob, 2019. "The role of operational research in green freight transportation," European Journal of Operational Research, Elsevier, vol. 274(3), pages 807-823.
    20. Max Leyerer & Marc-Oliver Sonneberg & Maximilian Heumann & Michael H. Breitner, 2019. "Decision support for sustainable and resilience-oriented urban parcel delivery," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 267-300, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:23:p:13103-:d:688869. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.