IDEAS home Printed from https://ideas.repec.org/a/eee/transa/v84y2016icp93-108.html
   My bibliography  Save this article

Assessment of schedule-based and frequency-based assignment models for strategic and operational planning of high-speed rail services

Author

Listed:
  • Cascetta, Ennio
  • Coppola, Pierluigi

Abstract

Despite some substantial limitations in the simulation of low-frequency scheduled services, frequency-based (FB) assignment models are by far the most widely used in practice. They are less expensive to build and less demanding from the computational viewpoint with respect to schedule-based (SB) models, as they require neither explicit simulation of the timetable (on the supply side), nor segmentation of OD matrices by desired departure/arrival time (on the demand side).

Suggested Citation

  • Cascetta, Ennio & Coppola, Pierluigi, 2016. "Assessment of schedule-based and frequency-based assignment models for strategic and operational planning of high-speed rail services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 84(C), pages 93-108.
  • Handle: RePEc:eee:transa:v:84:y:2016:i:c:p:93-108
    DOI: 10.1016/j.tra.2015.09.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0965856415002438
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tra.2015.09.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cascetta, Ennio & Papola, Andrea, 2009. "Dominance among alternatives in random utility models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 43(2), pages 170-179, February.
    2. Ennio Cascetta, 2009. "Transportation Systems Analysis," Springer Optimization and Its Applications, Springer, number 978-0-387-75857-2, June.
    3. Benedikt Mandel & Marc Gaudry & Werner Rothengatter, 1997. "A disaggregate Box-Cox Logit mode choice model of intercity passenger travel in Germany and its implications for high-speed rail demand forecasts," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(2), pages 99-120.
    4. Román, Concepción & Espino, Raquel & Martín, Juan Carlos, 2007. "Competition of high-speed train with air transport: The case of Madrid–Barcelona," Journal of Air Transport Management, Elsevier, vol. 13(5), pages 277-284.
    5. Antonio Couto & Daniel Graham, 2008. "The impact of high-speed technology on railway demand," Transportation, Springer, vol. 35(1), pages 111-128, January.
    6. Chaug-Ing Hsu & Wen-Ming Chung, 1997. "A model for market share distribution between high-speed and conventional rail services in a transportation corridor," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 31(2), pages 121-153.
    7. Campos, Javier & de Rus, Ginés, 2009. "Some stylized facts about high-speed rail: A review of HSR experiences around the world," Transport Policy, Elsevier, vol. 16(1), pages 19-28, January.
    8. Wardman, Mark, 2006. "Demand for rail travel and the effects of external factors," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(3), pages 129-148, May.
    9. Yao, Enjian & Morikawa, Takayuki, 2005. "A study of on integrated intercity travel demand model," Transportation Research Part A: Policy and Practice, Elsevier, vol. 39(4), pages 367-381, May.
    10. Juan Martín & Gustavo Nombela, 2007. "Microeconomic impacts of investments in high speed trains in Spain," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 41(3), pages 715-733, September.
    11. Agostino Nuzzolo & Francesco Russo & Umberto Crisalli, 2001. "A Doubly Dynamic Schedule-based Assignment Model for Transit Networks," Transportation Science, INFORMS, vol. 35(3), pages 268-285, August.
    12. Park, Yonghwa & Ha, Hun-Koo, 2006. "Analysis of the impact of high-speed railroad service on air transport demand," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 42(2), pages 95-104, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Morten Eltved & Otto Anker Nielsen & Thomas Kjær Rasmussen, 2019. "An assignment model for public transport networks with both schedule- and frequency-based services," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 769-793, December.
    2. Vautard, Félix & Liu, Chengxi & Fröidh, Oskar & Byström, Camilla, 2021. "Estimation of interregional rail passengers’ valuations for their desired departure times," Transport Policy, Elsevier, vol. 103(C), pages 183-196.
    3. Konrad Steiner & Stefan Irnich, 2018. "Schedule-Based Integrated Intercity Bus Line Planning via Branch-and-Cut," Transportation Science, INFORMS, vol. 52(4), pages 882-897, August.
    4. Cartenì, Armando & Pariota, Luigi & Henke, Ilaria, 2017. "Hedonic value of high-speed rail services: Quantitative analysis of the students’ domestic tourist attractiveness of the main Italian cities," Transportation Research Part A: Policy and Practice, Elsevier, vol. 100(C), pages 348-365.
    5. Carlos Romero & Clara Zamorano & Emilio Ortega & Belén Martín, 2021. "Access to Secondary HSR Stations in the Urban Periphery: A Generalised Cost-Based Assessment," Sustainability, MDPI, vol. 13(21), pages 1-19, November.
    6. Lee, Enoch & Cen, Xuekai & Lo, Hong K., 2022. "Scheduling zonal-based flexible bus service under dynamic stochastic demand and Time-dependent travel time," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    7. Guo, Ying & Cao, Lingyan & Song, Ying & Wang, Yan & Li, Yongkui, 2022. "Understanding the formation of City-HSR network: A case study of Yangtze River Delta, China," Transport Policy, Elsevier, vol. 116(C), pages 315-326.
    8. Han Zhong & Geqi Qi & Wei Guan & Xiaochen Hua, 2019. "Application of Nonnegative Tensor Factorization for Intercity Rail–Air Transport Supply Configuration Pattern Recognition," Sustainability, MDPI, vol. 11(6), pages 1-19, March.
    9. Xu, Guangming & Liu, Wei & Wu, Runfa & Yang, Hai, 2021. "A double time-scale passenger assignment model for high-speed railway networks with continuum capacity approximation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 150(C).
    10. Konrad Steiner, 2019. "Schedule-Based Integrated Inter-City Bus Line Planning for Multiple Timetabled Services via Large Multiple Neighborhood Search," Working Papers 1902, Gutenberg School of Management and Economics, Johannes Gutenberg-Universität Mainz.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Espinosa-Aranda, José Luis & García-Ródenas, Ricardo & Ramírez-Flores, María del Carmen & López-García, María Luz & Angulo, Eusebio, 2015. "High-speed railway scheduling based on user preferences," European Journal of Operational Research, Elsevier, vol. 246(3), pages 772-786.
    2. Dobruszkes, Frédéric, 2011. "High-speed rail and air transport competition in Western Europe: A supply-oriented perspective," Transport Policy, Elsevier, vol. 18(6), pages 870-879, November.
    3. Zhang, Anming & Wan, Yulai & Yang, Hangjun, 2019. "Impacts of high-speed rail on airlines, airports and regional economies: A survey of recent research," Transport Policy, Elsevier, vol. 81(C), pages 1-19.
    4. Wang, Yunmin & Cao, Guohua & Yan, Youliang & Wang, Jingjing, 2022. "Does high-speed rail stimulate cross-city technological innovation collaboration? Evidence from China," Transport Policy, Elsevier, vol. 116(C), pages 119-131.
    5. Marti-Henneberg, Jordi, 2015. "Attracting travellers to the high-speed train: a methodology for comparing potential demand between stations," Journal of Transport Geography, Elsevier, vol. 42(C), pages 145-156.
    6. Bergantino, Angela S. & Capozza, Claudia & Capurso, Mauro, 2015. "The impact of open access on intra- and inter-modal rail competition. A national level analysis in Italy," Transport Policy, Elsevier, vol. 39(C), pages 77-86.
    7. Isler, Cassiano Augusto & Blumenfeld, Marcelo & Caldeira, Gabriel Pereira & Roberts, Clive, 2024. "Long-Distance railway mode choice in Brazil: Evidence from a discrete choice experiment," Research in Transportation Economics, Elsevier, vol. 104(C).
    8. Mancuso, Paolo, 2014. "An analysis of the competition that impinges on the Milan–Rome intercity passenger transport link," Transport Policy, Elsevier, vol. 32(C), pages 42-52.
    9. Borsati, Mattia & Albalate, Daniel, 2020. "On the modal shift from motorway to high-speed rail: evidence from Italy," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 145-164.
    10. Chen, Zhenhua, 2023. "Socioeconomic Impacts of high-speed rail: A bibliometric analysis," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
    11. Castillo-Manzano, José I. & Pozo-Barajas, Rafael & Trapero, Juan R., 2015. "Measuring the substitution effects between High Speed Rail and air transport in Spain," Journal of Transport Geography, Elsevier, vol. 43(C), pages 59-65.
    12. Asep Yayat Nurhidayat & Hera Widyastuti & Sutikno & Dwi Phalita Upahita, 2023. "Research on Passengers’ Preferences and Impact of High-Speed Rail on Air Transport Demand," Sustainability, MDPI, vol. 15(4), pages 1-26, February.
    13. Adler, Nicole & Pels, Eric & Nash, Chris, 2010. "High-speed rail and air transport competition: Game engineering as tool for cost-benefit analysis," Transportation Research Part B: Methodological, Elsevier, vol. 44(7), pages 812-833, August.
    14. Albalate, Daniel & Bel, Germà & Fageda, Xavier, 2015. "Competition and cooperation between high-speed rail and air transportation services in Europe," Journal of Transport Geography, Elsevier, vol. 42(C), pages 166-174.
    15. Wan, Yulai & Ha, Hun-Koo & Yoshida, Yuichiro & Zhang, Anming, 2016. "Airlines’ reaction to high-speed rail entries: Empirical study of the Northeast Asian market," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 532-557.
    16. Hu, Xinlei & Wang, Xiaokun (Cara) & Ni, Linglin & Shi, Feng, 2022. "The impact of intercity economic complementarity on HSR volume in the context of megalopolization," Journal of Transport Geography, Elsevier, vol. 98(C).
    17. Bergantino, Angela S. & Capozza, Claudia & Capurso, Mauro, 2015. "The impact of open access on intra- and inter-modal rail competition. A national level analysis in Italy," Transport Policy, Elsevier, vol. 39(C), pages 77-86.
    18. Jiang, Changmin & Zhang, Anming, 2016. "Airline network choice and market coverage under high-speed rail competition," Transportation Research Part A: Policy and Practice, Elsevier, vol. 92(C), pages 248-260.
    19. Li, Zhi-Chun & Sheng, Dian, 2016. "Forecasting passenger travel demand for air and high-speed rail integration service: A case study of Beijing-Guangzhou corridor, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 94(C), pages 397-410.
    20. Zhang, Fangni & Graham, Daniel J. & Wong, Mark Siu Chun, 2018. "Quantifying the substitutability and complementarity between high-speed rail and air transport," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 191-215.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transa:v:84:y:2016:i:c:p:93-108. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/547/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.