IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v8y2019i5d10.1007_s13676-019-00146-5.html
   My bibliography  Save this article

Empty vehicle redistribution in autonomous taxi services

Author

Listed:
  • Tatiana Babicheva

    (VEDECOM)

  • Wilco Burghout

    (VEDECOM
    KTH Royal Institute of Technology)

Abstract

In this article, we investigate empty vehicle redistribution algorithms for Personal Rapid Transit (PRT) or autonomous station-based taxi services, from a passenger service perspective. We present a new index-based redistribution (IBR) algorithm that improves upon existing nearest neighbour and indexing algorithms by incorporating expected passenger arrivals and predicted waiting times into the surplus/deficit index. We evaluate six variations of algorithms on a test case in Paris Saclay, France. The results show that especially the combination of Simple Nearest Neighbours + Index Based Redistribution provides promising results for both off-peak and rush-hour demand, outperforming the other methods tested, in terms of passenger waiting time (average and maximum) as well as station queue lengths.

Suggested Citation

  • Tatiana Babicheva & Wilco Burghout, 2019. "Empty vehicle redistribution in autonomous taxi services," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 745-767, December.
  • Handle: RePEc:spr:eurjtl:v:8:y:2019:i:5:d:10.1007_s13676-019-00146-5
    DOI: 10.1007/s13676-019-00146-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-019-00146-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-019-00146-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    2. John D. Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    3. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Rashmi Bhardwaj & Shanky Garg, 2024. "Multi-objective and blockchain based optimization algorithm for fleet sharing management," OPSEARCH, Springer;Operational Research Society of India, vol. 61(3), pages 1131-1153, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wei-Hsi Hung & Yao-Tang Hsu, 2020. "Service Quality and Service Gap of Autonomous Driving Group Rapid Transit System," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    2. Hadi Charkhgard & Mahdi Takalloo & Zulqarnain Haider, 2020. "Bi-objective autonomous vehicle repositioning problem with travel time uncertainty," 4OR, Springer, vol. 18(4), pages 477-505, December.
    3. Hu, Beibei & Xia, Xuanxuan & Sun, Huijun & Dong, Xianlei, 2019. "Understanding the imbalance of the taxi market: From the high-quality customer’s perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    4. Kai Li & Yuqian Pan & Bayi Cheng & Bohai Liu, 2018. "The Setting and Optimization of Quick Queue," Journal of Optimization Theory and Applications, Springer, vol. 178(3), pages 1014-1026, September.
    5. Nir Perel & Efrat Perel & Mor Kaspi, 2025. "The Israeli queue with a capacitated server: modeling and approximations," Annals of Operations Research, Springer, vol. 344(1), pages 267-285, January.
    6. Alessandro Avenali & Yuri Maria Chianese & Graziano Ciucciarelli & Giorgio Grani & Laura Palagi, 2019. "Profit optimization in one-way free float car sharing services: a user based relocation strategy relying on price differentiation and Urban Area Values," DIAG Technical Reports 2019-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    7. Shuang Liu & Kirsten Maclean & Cathy Robinson, 2019. "A cost-effective framework to prioritise stakeholder participation options," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 7(3), pages 221-241, November.
    8. Sumitkumar, Rathor & Al-Sumaiti, Ameena Saad, 2024. "Shared autonomous electric vehicle: Towards social economy of energy and mobility from power-transportation nexus perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 197(C).
    9. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    10. Wagner, Sebastian & Brandt, Tobias & Neumann, Dirk, 2016. "In free float: Developing Business Analytics support for carsharing providers," Omega, Elsevier, vol. 59(PA), pages 4-14.
    11. Mengwei Chen & Yilin Sun & E Owen D Waygood & Jincheng Yu & Kai Zhu, 2022. "User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    12. Stokkink, Patrick & Geroliminis, Nikolas, 2021. "Predictive user-based relocation through incentives in one-way car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 230-249.
    13. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    14. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    15. Alain Quilliot & Antoine Sarbinowski & Hélène Toussaint, 2021. "Vehicle driven approaches for non preemptive vehicle relocation with integrated quality criterion in a vehicle sharing system," Annals of Operations Research, Springer, vol. 298(1), pages 445-468, March.
    16. Foschi, Rachele, 2023. "A Point Processes approach to bicycle sharing systems’ design and management," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    17. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    18. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    19. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    20. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:8:y:2019:i:5:d:10.1007_s13676-019-00146-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.