IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v344y2025i1d10.1007_s10479-024-06298-6.html
   My bibliography  Save this article

The Israeli queue with a capacitated server: modeling and approximations

Author

Listed:
  • Nir Perel

    (Afeka Tel-Aviv Academic College of Engineering)

  • Efrat Perel

    (Afeka Tel-Aviv Academic College of Engineering)

  • Mor Kaspi

    (Tel Aviv University)

Abstract

The Israeli Queue is a batch service polling system where a single server attends to multiple queues based on seniority. Each arriving customer belongs to one of several classes. Upon arrival, a customer either joins an existing queue for their class or initiates a new queue if they are the first of their class to arrive. Customers from the class with the most senior member are served together as a batch, with the service time remaining constant regardless of the batch size. This service model is found in applications like advanced elevator systems and on-demand shared mobility, where passengers heading to the same destination can share a ride. However, in many real-world scenarios, the vehicle capacities are small and constraining, which calls for a deeper exploration of the Israeli queue with a capacitated server (IQCS). In this paper, we formally define the IQCS and address the challenges of creating a mathematically tractable model to represent it. To approximate the IQCS, we develop a quasi-birth-death process and derive approximations for key performance measures. To validate our approach, we implement a simulation model and use it to compare the IQCS, the approximate model, and the original Israeli Queue. Our results across various scenarios demonstrate the accuracy of the approximate model. Nonetheless, the presence of a remaining gap underscores the ongoing challenge of precisely and efficiently modeling the IQCS, posing an open question for the research community.

Suggested Citation

  • Nir Perel & Efrat Perel & Mor Kaspi, 2025. "The Israeli queue with a capacitated server: modeling and approximations," Annals of Operations Research, Springer, vol. 344(1), pages 267-285, January.
  • Handle: RePEc:spr:annopr:v:344:y:2025:i:1:d:10.1007_s10479-024-06298-6
    DOI: 10.1007/s10479-024-06298-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-024-06298-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-024-06298-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sai Mali Ananthanarayanan & Charles C. Branas & Adam N. Elmachtoub & Clifford S. Stein & Yeqing Zhou, 2022. "Queuing safely for elevator systems amidst a pandemic," Production and Operations Management, Production and Operations Management Society, vol. 31(5), pages 2306-2323, May.
    2. Kahraman, Aykut & Gosavi, Abhijit, 2011. "On the distribution of the number stranded in bulk-arrival, bulk-service queues of the M/G/1 form," European Journal of Operational Research, Elsevier, vol. 212(2), pages 352-360, July.
    3. Stiglic, Mitja & Agatz, Niels & Savelsbergh, Martin & Gradisar, Mirko, 2015. "The benefits of meeting points in ride-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 36-53.
    4. John D. Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    5. John Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    6. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2015. "The Benefits of Meeting Points in Ride-sharing Systems," ERIM Report Series Research in Management ERS-2015-003-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    7. Nir Perel & Uri Yechiali, 2022. "The Israeli Queue with a general group-joining policy," Annals of Operations Research, Springer, vol. 317(1), pages 179-212, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Meng Li & Guowei Hua & Haijun Huang, 2018. "A Multi-Modal Route Choice Model with Ridesharing and Public Transit," Sustainability, MDPI, vol. 10(11), pages 1-14, November.
    2. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    3. Yu Wang & Shanyong Wang & Jing Wang & Jiuchang Wei & Chenglin Wang, 2020. "An empirical study of consumers’ intention to use ride-sharing services: using an extended technology acceptance model," Transportation, Springer, vol. 47(1), pages 397-415, February.
    4. Zhang, Wenqing & Liu, Liangliang, 2022. "Exploring non-users' intention to adopt ride-sharing services: Taking into account increased risks due to the COVID-19 pandemic among other factors," Transportation Research Part A: Policy and Practice, Elsevier, vol. 158(C), pages 180-195.
    5. Horner, Hannah & Pazour, Jennifer & Mitchell, John E., 2021. "Optimizing driver menus under stochastic selection behavior for ridesharing and crowdsourced delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    6. Paul Czioska & Ronny Kutadinata & Aleksandar Trifunović & Stephan Winter & Monika Sester & Bernhard Friedrich, 2019. "Real-world meeting points for shared demand-responsive transportation systems," Public Transport, Springer, vol. 11(2), pages 341-377, August.
    7. Bhoopalam, Anirudh Kishore & Agatz, Niels & Zuidwijk, Rob, 2018. "Planning of truck platoons: A literature review and directions for future research," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 212-228.
    8. Hu, Beibei & Xia, Xuanxuan & Sun, Huijun & Dong, Xianlei, 2019. "Understanding the imbalance of the taxi market: From the high-quality customer’s perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
    9. Zhong, Lin & Zhang, Kenan & (Marco) Nie, Yu & Xu, Jiuping, 2020. "Dynamic carpool in morning commute: Role of high-occupancy-vehicle (HOV) and high-occupancy-toll (HOT) lanes," Transportation Research Part B: Methodological, Elsevier, vol. 135(C), pages 98-119.
    10. Stiglic, M. & Agatz, N.A.H. & Savelsbergh, M.W.P. & Gradisar, M., 2016. "Enhancing Urban Mobility: Integrating Ride-sharing and Public Transit," ERIM Report Series Research in Management ERS-2016-006-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    11. Tao Yang & Weixin Wang, 2022. "Logistics Network Distribution Optimization Based on Vehicle Sharing," Sustainability, MDPI, vol. 14(4), pages 1-12, February.
    12. Xing Wang & Niels Agatz & Alan Erera, 2018. "Stable Matching for Dynamic Ride-Sharing Systems," Transportation Science, INFORMS, vol. 52(4), pages 850-867, August.
    13. Wang, Jing-Peng & Ban, Xuegang (Jeff) & Huang, Hai-Jun, 2019. "Dynamic ridesharing with variable-ratio charging-compensation scheme for morning commute," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 390-415.
    14. Masoud, Neda & Jayakrishnan, R., 2017. "A decomposition algorithm to solve the multi-hop Peer-to-Peer ride-matching problem," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 1-29.
    15. Peng, Zixuan & Shan, Wenxuan & Zhu, Xiaoning & Yu, Bin, 2022. "Many-to-one stable matching for taxi-sharing service with selfish players," Transportation Research Part A: Policy and Practice, Elsevier, vol. 160(C), pages 255-279.
    16. Federico Librino & M. Elena Renda & Paolo Santi & Francesca Martelli & Giovanni Resta & Fabio Duarte & Carlo Ratti & Jinhua Zhao, 2020. "Home-work carpooling for social mixing," Transportation, Springer, vol. 47(5), pages 2671-2701, October.
    17. Alnaggar, Aliaa & Gzara, Fatma & Bookbinder, James H., 2021. "Crowdsourced delivery: A review of platforms and academic literature," Omega, Elsevier, vol. 98(C).
    18. Yang, Hai & Qin, Xiaoran & Ke, Jintao & Ye, Jieping, 2020. "Optimizing matching time interval and matching radius in on-demand ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 131(C), pages 84-105.
    19. Yan, Pengyu & Lee, Chung-Yee & Chu, Chengbin & Chen, Cynthia & Luo, Zhiqin, 2021. "Matching and pricing in ride-sharing: Optimality, stability, and financial sustainability," Omega, Elsevier, vol. 102(C).
    20. Amirmahdi Tafreshian & Neda Masoud & Yafeng Yin, 2020. "Frontiers in Service Science: Ride Matching for Peer-to-Peer Ride Sharing: A Review and Future Directions," Service Science, INFORMS, vol. 12(2-3), pages 44-60, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:344:y:2025:i:1:d:10.1007_s10479-024-06298-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.