IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v535y2019ics0378437119313226.html
   My bibliography  Save this article

Understanding the imbalance of the taxi market: From the high-quality customer’s perspective

Author

Listed:
  • Hu, Beibei
  • Xia, Xuanxuan
  • Sun, Huijun
  • Dong, Xianlei

Abstract

With the rapid development of the urban economy and transportation, the taxi market has presented a series of problems regarding unreasonable resource allocation, demand–supply imbalance, and driver income imbalance. Since the distribution of high-quality customers (hereafter HQC) affects drivers’ incomes and resource allocation in the taxi market, it is of great significance to study the HQC distribution to address these imbalance problems and understand the imbalance of the taxi market. In this paper, we calculate the profit margin of each order and construct a high-quality customer evaluation model from taxi GPS trajectory data. In analyzing the spatial–temporal distribution of HQC, our results indicate that HQC present a regional aggregation phenomenon in the spatial dimension, and HQC are mainly distributed in the main urban areas. The distribution of HQC is imbalanced in various administrative districts and functional zones. The daily change of orders in each administrative district is the same, but the temporal distribution of HQC is imbalanced. The temporal distribution of HQC in each functional zone is imbalanced, showing different daily change trend. According to these results, we suggest that the pricing of taxis and online ride-hailing services be coordinated based on the spatial–temporal distribution characteristics of HQC and that resources be rationally allocated to promote the sustainable and healthy development of urban transportation.

Suggested Citation

  • Hu, Beibei & Xia, Xuanxuan & Sun, Huijun & Dong, Xianlei, 2019. "Understanding the imbalance of the taxi market: From the high-quality customer’s perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 535(C).
  • Handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119313226
    DOI: 10.1016/j.physa.2019.122297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437119313226
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2019.122297?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tang, Jinjun & Liang, Jian & Zhang, Shen & Huang, Helai & Liu, Fang, 2018. "Inferring driving trajectories based on probabilistic model from large scale taxi GPS data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 566-577.
    2. Cai, Hua & Zhan, Xiaowei & Zhu, Ji & Jia, Xiaoping & Chiu, Anthony S.F. & Xu, Ming, 2016. "Understanding taxi travel patterns," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 590-597.
    3. D. Brockmann & L. Hufnagel & T. Geisel, 2006. "The scaling laws of human travel," Nature, Nature, vol. 439(7075), pages 462-465, January.
    4. Shixiong Jiang & Wei Guan & Zhengbing He & Liu Yang, 2018. "Measuring Taxi Accessibility Using Grid-Based Method with Trajectory Data," Sustainability, MDPI, vol. 10(9), pages 1-16, September.
    5. Yang, Hai & Wong, S. C. & Wong, K. I., 2002. "Demand-supply equilibrium of taxi services in a network under competition and regulation," Transportation Research Part B: Methodological, Elsevier, vol. 36(9), pages 799-819, November.
    6. John D. Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    7. Yang, Hai & Wong, S. C., 1998. "A network model of urban taxi services," Transportation Research Part B: Methodological, Elsevier, vol. 32(4), pages 235-246, May.
    8. Yang, Yu & He, Ze & Song, Zouying & Fu, Xin & Wang, Jianwei, 2018. "Investigation on structural and spatial characteristics of taxi trip trajectory network in Xi’an, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 506(C), pages 755-766.
    9. Cui, JianXun & Liu, Feng & Janssens, Davy & An, Shi & Wets, Geert & Cools, Mario, 2016. "Detecting urban road network accessibility problems using taxi GPS data," Journal of Transport Geography, Elsevier, vol. 51(C), pages 147-157.
    10. Páez, Antonio & Scott, Darren M. & Morency, Catherine, 2012. "Measuring accessibility: positive and normative implementations of various accessibility indicators," Journal of Transport Geography, Elsevier, vol. 25(C), pages 141-153.
    11. John Lees-Miller, 2016. "Minimising average passenger waiting time in personal rapid transit systems," Annals of Operations Research, Springer, vol. 236(2), pages 405-424, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bi, Hui & Ye, Zhirui & Zhao, Jiahui & Chen, Enhui, 2020. "Real trip costs: Modelling intangible costs of urban online car-hailing in Haikou," Transport Policy, Elsevier, vol. 96(C), pages 128-140.
    2. Yang, Qiaoli & Yang, Bo & Qiao, Zheng & Tang, Min-an & Gao, Fengyang, 2021. "Impact of possible random factors on queue behaviors of passengers and taxis at taxi stand of transport hubs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 580(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Helai Huang & Jialing Wu & Fang Liu & Yiwei Wang, 2020. "Measuring Accessibility Based on Improved Impedance and Attractive Functions Using Taxi Trajectory Data," Sustainability, MDPI, vol. 13(1), pages 1-23, December.
    2. Ting Wang & Yong Zhang & Meiye Li & Lei Liu, 2019. "How Do Passengers with Different Using Frequencies Choose between Traditional Taxi Service and Online Car-Hailing Service? A Case Study of Nanjing, China," Sustainability, MDPI, vol. 11(23), pages 1-18, November.
    3. Xuanxuan Xia & Kexin Lin & Yang Ding & Xianlei Dong & Huijun Sun & Beibei Hu, 2020. "Research on the Coupling Coordination Relationships between Urban Function Mixing Degree and Urbanization Development Level Based on Information Entropy," IJERPH, MDPI, vol. 18(1), pages 1-24, December.
    4. Dong, Xianlei & Wang, Ying & Li, Xufeng & Zhong, Zhenfang & Shen, Xinyi & Sun, Huijun & Hu, Beibei, 2023. "Understanding the influencing factors of taxi ride-sharing: A case study of Chengdu, China," Transportation Research Part A: Policy and Practice, Elsevier, vol. 176(C).
    5. Wong, K.I. & Wong, S.C. & Yang, Hai & Wu, J.H., 2008. "Modeling urban taxi services with multiple user classes and vehicle modes," Transportation Research Part B: Methodological, Elsevier, vol. 42(10), pages 985-1007, December.
    6. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    7. (Ato) Xu, Wangtu & Zhou, Jiangping & Yang, Linchuan & Li, Ling, 2018. "The implications of high-speed rail for Chinese cities: Connectivity and accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 308-326.
    8. Di, Xuan & Ban, Xuegang Jeff, 2019. "A unified equilibrium framework of new shared mobility systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 50-78.
    9. Yang, Hai & Leung, Cowina W.Y. & Wong, S.C. & Bell, Michael G.H., 2010. "Equilibria of bilateral taxi-customer searching and meeting on networks," Transportation Research Part B: Methodological, Elsevier, vol. 44(8-9), pages 1067-1083, September.
    10. Wei-Hsi Hung & Yao-Tang Hsu, 2020. "Service Quality and Service Gap of Autonomous Driving Group Rapid Transit System," Sustainability, MDPI, vol. 12(22), pages 1-18, November.
    11. Pueboobpaphan, Suthatip & Indra-Payoong, Nakorn & Opasanon, Sathaporn, 2019. "Experimental analysis of variable surcharge policy of taxi service auction," Transport Policy, Elsevier, vol. 76(C), pages 134-148.
    12. Tong Zhou & Xintao Liu & Zhen Qian & Haoxuan Chen & Fei Tao, 2019. "Dynamic Update and Monitoring of AOI Entrance via Spatiotemporal Clustering of Drop-Off Points," Sustainability, MDPI, vol. 11(23), pages 1-20, December.
    13. Gholami, Ali & Taghizadeh, Yaser & Tian, Zong, 2014. "Classification of taxi khattee (jitney) lines based on topography and line cost indices," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 239-249.
    14. Wong, R.C.P. & Szeto, W.Y., 2022. "The effects of peak hour and congested area taxi surcharges on customers’ travel decisions: Empirical evidence and policy implications," Transport Policy, Elsevier, vol. 121(C), pages 78-89.
    15. Fu, Xin & Xu, Chengyao & Liu, Yuteng & Chen, Chi-Hua & Hwang, F.J. & Wang, Jianwei, 2022. "Spatial heterogeneity and migration characteristics of traffic congestion—A quantitative identification method based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    16. Sharma, Ishant & Mishra, Sabyasachee & Golias, Mihalis M. & Welch, Timothy F. & Cherry, Christopher R., 2020. "Equity of transit connectivity in Tennessee cities," Journal of Transport Geography, Elsevier, vol. 86(C).
    17. Qian, Xinwu & Ukkusuri, Satish V., 2017. "Taxi market equilibrium with third-party hailing service," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 43-63.
    18. Zhang, Hui & Cui, Houdun & Wang, Wei & Song, Wenbo, 2020. "Properties of Chinese railway network: Multilayer structures based on timetable data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    19. Hadi Charkhgard & Mahdi Takalloo & Zulqarnain Haider, 2020. "Bi-objective autonomous vehicle repositioning problem with travel time uncertainty," 4OR, Springer, vol. 18(4), pages 477-505, December.
    20. Kou, Zhaoyu & Cai, Hua, 2019. "Understanding bike sharing travel patterns: An analysis of trip data from eight cities," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 515(C), pages 785-797.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:535:y:2019:i:c:s0378437119313226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.