IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v5y2016i3d10.1007_s13676-015-0076-6.html
   My bibliography  Save this article

Evaluating the influence of carsharing stations’ location on potential membership: a Swiss case study

Author

Listed:
  • Francesco Ciari

    (ETH Zürich, IVT, Institute for Transport Planning and Systems)

  • Claude Weis

    (TransOptima GmbH)

  • Milos Balac

    (ETH Zürich, IVT, Institute for Transport Planning and Systems)

Abstract

Carsharing as a mode, in any of its different forms, has the peculiarity of being accessible only to members. The research presented in this paper focuses on round-trip-based carsharing, where vehicles are parked at fixed locations, called in this paper stations. Round-trip-based carsharing has been the first successful form of carsharing, and is still the most diffused one in many countries. Several studies looked at the potential of such a system in various countries but the link between spatial distribution of the stations and potential membership has not been done yet. This paper looks at this question while trying to address other limitations of the existing literature on carsharing potential. The research has two parts. In the first part, a binary logistic model of round-trip based carsharing membership in Switzerland is estimated. The model is based on a large RP dataset (the Swiss national travel diaries survey) where information on carsharing membership is collected. This provides a representative and non-biased sample. The model takes into account accessibility to carsharing at local level introducing a dependency between potential membership and actual availability of the service. The model is then run on a synthetic population representing the whole Swiss population—created based on full census data—and then validated against actual membership data of the Swiss carsharing operator Mobility. It is shown that the model estimated is able to reproduce fairly well the spatial distribution of carsharing members in Switzerland. The second part is aimed at showing that the location of stations actually impacts potential membership. To this purpose an approach to solve the problem of the optimal location of carsharing stations is proposed, where the model estimated in the first part is used as objective function of an optimization algorithm. The region surrounding the city of Zurich is taken as case study for this approach. The proposed technique is suitable to find new constellations of stations so that the number of carsharing members is incremented and can also be seen as an innovative instrument which can help in the planning of carsharing station networks.

Suggested Citation

  • Francesco Ciari & Claude Weis & Milos Balac, 2016. "Evaluating the influence of carsharing stations’ location on potential membership: a Swiss case study," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 345-369, August.
  • Handle: RePEc:spr:eurjtl:v:5:y:2016:i:3:d:10.1007_s13676-015-0076-6
    DOI: 10.1007/s13676-015-0076-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-015-0076-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-015-0076-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Trevor Hale & Christopher Moberg, 2003. "Location Science Research: A Review," Annals of Operations Research, Springer, vol. 123(1), pages 21-35, October.
    2. Prettenthaler, Franz E. & Steininger, Karl W., 1999. "From ownership to service use lifestyle: the potential of car sharing," Ecological Economics, Elsevier, vol. 28(3), pages 443-453, March.
    3. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    2. Sweet, Matthias N. & Scott, Darren M., 2021. "Shared mobility adoption from 2016 to 2018 in the Greater Toronto and Hamilton Area: Demographic or geographic diffusion?," Journal of Transport Geography, Elsevier, vol. 96(C).
    3. Maria Juschten & Timo Ohnmacht & Vu Thi Thao & Regine Gerike & Reinhard Hössinger, 2019. "Carsharing in Switzerland: identifying new markets by predicting membership based on data on supply and demand," Transportation, Springer, vol. 46(4), pages 1171-1194, August.
    4. Wenxiang Li & Ye Li & Jing Fan & Haopeng Deng, 2017. "Siting of Carsharing Stations Based on Spatial Multi-Criteria Evaluation: A Case Study of Shanghai EVCARD," Sustainability, MDPI, vol. 9(1), pages 1-16, January.
    5. Weibo Li & Maria Kamargianni, 2020. "Steering short-term demand for car-sharing: a mode choice and policy impact analysis by trip distance," Transportation, Springer, vol. 47(5), pages 2233-2265, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sisi Jian & David Rey & Vinayak Dixit, 2019. "An Integrated Supply-Demand Approach to Solving Optimal Relocations in Station-Based Carsharing Systems," Networks and Spatial Economics, Springer, vol. 19(2), pages 611-632, June.
    2. Ning Wang & Runlin Yan, 2015. "Research on Consumers’ Use Willingness and Opinions of Electric Vehicle Sharing: An Empirical Study in Shanghai," Sustainability, MDPI, vol. 8(1), pages 1-18, December.
    3. Alessandro Avenali & Yuri Maria Chianese & Graziano Ciucciarelli & Giorgio Grani & Laura Palagi, 2019. "Profit optimization in one-way free float car sharing services: a user based relocation strategy relying on price differentiation and Urban Area Values," DIAG Technical Reports 2019-04, Department of Computer, Control and Management Engineering, Universita' degli Studi di Roma "La Sapienza".
    4. Alcott, Blake, 2008. "The sufficiency strategy: Would rich-world frugality lower environmental impact," Ecological Economics, Elsevier, vol. 64(4), pages 770-786, February.
    5. Mengwei Chen & Yilin Sun & E Owen D Waygood & Jincheng Yu & Kai Zhu, 2022. "User characteristics and service satisfaction of car sharing systems: Evidence from Hangzhou, China," PLOS ONE, Public Library of Science, vol. 17(2), pages 1-16, February.
    6. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    7. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    8. Yongji Jia & Wang Zeng & Yanting Xing & Dong Yang & Jia Li, 2020. "The Bike-Sharing Rebalancing Problem Considering Multi-Energy Mixed Fleets and Traffic Restrictions," Sustainability, MDPI, vol. 13(1), pages 1-15, December.
    9. repec:zbw:rwirep:0385 is not listed on IDEAS
    10. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    11. Liu, Haoxiang & Wang, David Z.W., 2017. "Locating multiple types of charging facilities for battery electric vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 103(C), pages 30-55.
    12. Taran Faehn & Gabriel Bachner & Robert Beach & Jean Chateau & Shinichiro Fujimori & Madanmohan Ghosh & Meriem Hamdi-Cherif & Elisa Lanzi & Sergey Paltsev & Toon Vandyck & Bruno Cunha & Rafael Garaffa , 2020. "Capturing Key Energy and Emission Trends in CGE models: Assessment of Status and Remaining Challenges," Journal of Global Economic Analysis, Center for Global Trade Analysis, Department of Agricultural Economics, Purdue University, vol. 5(1), pages 196-272, June.
    13. Nourinejad, Mehdi & Zhu, Sirui & Bahrami, Sina & Roorda, Matthew J., 2015. "Vehicle relocation and staff rebalancing in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 81(C), pages 98-113.
    14. Elżbieta Szymańska & Eugenia Panfiluk & Halina Kiryluk, 2021. "Innovative Solutions for the Development of Sustainable Transport and Improvement of the Tourist Accessibility of Peripheral Areas: The Case of the Bia?owie?a Forest Region," Sustainability, MDPI, vol. 13(4), pages 1-23, February.
    15. Mark Horner & Michael Widener, 2011. "The effects of transportation network failure on people’s accessibility to hurricane disaster relief goods: a modeling approach and application to a Florida case study," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 59(3), pages 1619-1634, December.
    16. Junhee Kang & Keeyeon Hwang & Sungjin Park, 2016. "Finding Factors that Influence Carsharing Usage: Case Study in Seoul," Sustainability, MDPI, vol. 8(8), pages 1-12, July.
    17. Yoon-Young Chun & Mitsutaka Matsumoto & Kiyotaka Tahara & Kenichiro Chinen & Hideki Endo, 2019. "Exploring Factors Affecting Car Sharing Use Intention in the Southeast-Asia Region: A Case Study in Java, Indonesia," Sustainability, MDPI, vol. 11(18), pages 1-26, September.
    18. Marta Cavaleiro & Farid Alizadeh, 2021. "A dual simplex-type algorithm for the smallest enclosing ball of balls," Computational Optimization and Applications, Springer, vol. 79(3), pages 767-787, July.
    19. Sybille Bauriedl & Anke Strüver, 2020. "Platform Urbanism: Technocapitalist Production of Private and Public Spaces," Urban Planning, Cogitatio Press, vol. 5(4), pages 267-276.
    20. Cantelmo, Guido & Amini, Roja Ezzati & Monteiro, Mayara Moraes & Frenkel, Amnon & Lerner, Ofer & Tavory, Sharon Shoshany & Galtzur, Ayelet & Kamargianni, Maria & Shiftan, Yoram & Behrischi, Christiane, 2022. "Aligning users’ and stakeholders’ needs: How incentives can reshape the carsharing market," Transport Policy, Elsevier, vol. 126(C), pages 306-326.
    21. Ashu Kedia & Diana Kusumastuti & Alan Nicholson, 2019. "Establishing Collection and Delivery Points to Encourage the Use of Active Transport: A Case Study in New Zealand Using a Consumer-Centric Approach," Sustainability, MDPI, vol. 11(22), pages 1-23, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:5:y:2016:i:3:d:10.1007_s13676-015-0076-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.