IDEAS home Printed from https://ideas.repec.org/a/spr/eurjtl/v5y2016i1d10.1007_s13676-015-0088-2.html
   My bibliography  Save this article

Foxes and sheep: effect of predictive logic in day-to-day dynamics of route choice behavior

Author

Listed:
  • Hamed Alibabai

    (Northwestern University)

  • Hani S. Mahmassani

    (Northwestern University)

Abstract

In this study drivers are categorized into two groups, called first-level (sheep) or second-level (foxes) thinkers, based on extent of reliance on predictive logic in their day-to-day decision process. While the first-level thinkers are using the distributed information as the only contributor to their belief, the second-level thinkers strategize by means of predicting others’ behavior. The study shows how the proportion of the two user types will affect system travel times. Investigation is performed primarily through numerical experiments conducted in an idealized traffic system. There is a threshold for the proportion of the second-level thinkers, which minimizes the variability of the travel time in the traffic system. Below this value, the second-level thinkers benefit from using the foxy logic. This advantage decreases with increase in the proportion of the second-level thinkers and disappears once the threshold is exceeded. It is also shown that in a learning society, opportunistic behavior pays off less. Learning also reduces the system fluctuations, resulting in greater stability. Implications for advanced traveler information and intelligent system management are discussed.

Suggested Citation

  • Hamed Alibabai & Hani S. Mahmassani, 2016. "Foxes and sheep: effect of predictive logic in day-to-day dynamics of route choice behavior," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 53-67, March.
  • Handle: RePEc:spr:eurjtl:v:5:y:2016:i:1:d:10.1007_s13676-015-0088-2
    DOI: 10.1007/s13676-015-0088-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s13676-015-0088-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s13676-015-0088-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Theo Arentze & Harry Timmermans, 2003. "Modeling learning and adaptation processes in activity-travel choice A framework and numerical experiment," Transportation, Springer, vol. 30(1), pages 37-62, February.
    2. Anthony Ziegelmeyer & Frédéric Koessler & Kene Boun My & Laurent Denant-Boèmont, 2008. "Road Traffic Congestion and Public Information: An Experimental Investigation," Journal of Transport Economics and Policy, University of Bath, vol. 42(1), pages 43-82, January.
    3. Crawford, Vincent P, 1995. "Adaptive Dynamics in Coordination Games," Econometrica, Econometric Society, vol. 63(1), pages 103-143, January.
    4. Chang, Gang-Len & Mahmassani, Hani S., 1988. "Travel time prediction and departure time adjustment behavior dynamics in a congested traffic system," Transportation Research Part B: Methodological, Elsevier, vol. 22(3), pages 217-232, June.
    5. Jerker Denrell & James G. March, 2001. "Adaptation as Information Restriction: The Hot Stove Effect," Organization Science, INFORMS, vol. 12(5), pages 523-538, October.
    6. André de Palma & Nathalie Picard, 2006. "Equilibria and Information Provision in Risky Networks with Risk-Averse Drivers," Transportation Science, INFORMS, vol. 40(4), pages 393-408, November.
    7. Erel Avineri & Joseph Prashker, 2006. "The Impact of Travel Time Information on Travelers’ Learning under Uncertainty," Transportation, Springer, vol. 33(4), pages 393-408, July.
    8. Hazelton, Martin L., 2002. "Day-to-day variation in Markovian traffic assignment models," Transportation Research Part B: Methodological, Elsevier, vol. 36(7), pages 637-648, August.
    9. Wen, Chieh-Hua & Koppelman, Frank S., 2001. "The generalized nested logit model," Transportation Research Part B: Methodological, Elsevier, vol. 35(7), pages 627-641, August.
    10. G. E. Cantarella & E. Cascetta, 1995. "Dynamic Processes and Equilibrium in Transportation Networks: Towards a Unifying Theory," Transportation Science, INFORMS, vol. 29(4), pages 305-329, November.
    11. Mahmassani, Hani S. & Chang, Gang-Len, 1986. "Experiments with departure time choice dynamics of urban commuters," Transportation Research Part B: Methodological, Elsevier, vol. 20(4), pages 297-320, August.
    12. Horowitz, Joel L., 1984. "The stability of stochastic equilibrium in a two-link transportation network," Transportation Research Part B: Methodological, Elsevier, vol. 18(1), pages 13-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Meneguzzer, Claudio, 2022. "Day-to-day dynamics in a simple traffic network with mixed direct and contrarian route choice behaviors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eran Ben-Elia & Ido Erev & Yoram Shiftan, 2008. "The combined effect of information and experience on drivers’ route-choice behavior," Transportation, Springer, vol. 35(2), pages 165-177, March.
    2. Ben-Elia, Eran & Shiftan, Yoram, 2010. "Which road do I take? A learning-based model of route-choice behavior with real-time information," Transportation Research Part A: Policy and Practice, Elsevier, vol. 44(4), pages 249-264, May.
    3. David Watling & Giulio Cantarella, 2015. "Model Representation & Decision-Making in an Ever-Changing World: The Role of Stochastic Process Models of Transportation Systems," Networks and Spatial Economics, Springer, vol. 15(3), pages 843-882, September.
    4. Caspar G. Chorus & Benedict G. C. Dellaert, 2012. "Travel Choice Inertia: The Joint Role of Risk Aversion and Learning," Journal of Transport Economics and Policy, University of Bath, vol. 46(1), pages 139-155, January.
    5. G. E. Cantarella & D. P. Watling, 2016. "Modelling road traffic assignment as a day-to-day dynamic, deterministic process: a unified approach to discrete- and continuous-time models," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 69-98, March.
    6. Jiayang Li & Zhaoran Wang & Yu Marco Nie, 2023. "Wardrop Equilibrium Can Be Boundedly Rational: A New Behavioral Theory of Route Choice," Papers 2304.02500, arXiv.org, revised Feb 2024.
    7. Morgan, John & Orzen, Henrik & Sefton, Martin, 2009. "Network architecture and traffic flows: Experiments on the Pigou-Knight-Downs and Braess Paradoxes," Games and Economic Behavior, Elsevier, vol. 66(1), pages 348-372, May.
    8. Tang, Yue & Gao, Song & Ben-Elia, Eran, 2017. "An exploratory study of instance-based learning for route choice with random travel times," Journal of choice modelling, Elsevier, vol. 24(C), pages 22-35.
    9. Martin L. Hazelton & David P. Watling, 2004. "Computation of Equilibrium Distributions of Markov Traffic-Assignment Models," Transportation Science, INFORMS, vol. 38(3), pages 331-342, August.
    10. Claudia Castaldi & Paolo Delle Site & Francesco Filippi, 2019. "Stochastic user equilibrium in the presence of state dependence," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 535-559, December.
    11. Navid Khademi & Mojtaba Rajabi & Afshin S. Mohaymany & Mahdi Samadzad, 2016. "Day-to-day travel time perception modeling using an adaptive-network-based fuzzy inference system (ANFIS)," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 25-52, March.
    12. Rath, Srushti & Liu, Bingqing & Yoon, Gyugeun & Chow, Joseph Y.J., 2023. "Microtransit deployment portfolio management using simulation-based scenario data upscaling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    13. Cominetti, Roberto & Melo, Emerson & Sorin, Sylvain, 2010. "A payoff-based learning procedure and its application to traffic games," Games and Economic Behavior, Elsevier, vol. 70(1), pages 71-83, September.
    14. Schwanen, Tim, 2020. "Towards decolonial human subjects in research on transport," Journal of Transport Geography, Elsevier, vol. 88(C).
    15. Xu, Xiangdong & Qu, Kai & Chen, Anthony & Yang, Chao, 2021. "A new day-to-day dynamic network vulnerability analysis approach with Weibit-based route adjustment process," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    16. Han, Linghui & Sun, Huijun & Wu, Jianjun & Zhu, Chengjuan, 2011. "Day-to-day evolution of the traffic network with Advanced Traveler Information System," Chaos, Solitons & Fractals, Elsevier, vol. 44(10), pages 914-919.
    17. Xiao Han & Yun Yu & Bin Jia & Zi‐You Gao & Rui Jiang & H. Michael Zhang, 2021. "Coordination Behavior in Mode Choice: Laboratory Study of Equilibrium Transformation and Selection," Production and Operations Management, Production and Operations Management Society, vol. 30(10), pages 3635-3656, October.
    18. Sun, Mingmei, 2023. "A day-to-day dynamic model for mixed traffic flow of autonomous vehicles and inertial human-driven vehicles," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    19. Roger B. Chen & Christopher Valant, 2023. "Stability and Convergence in Matching Processes for Shared Mobility Systems," Networks and Spatial Economics, Springer, vol. 23(2), pages 469-486, June.
    20. Paolo Delle Site, 2017. "On the Equivalence Between SUE and Fixed-Point States of Day-to-Day Assignment Processes with Serially-Correlated Route Choice," Networks and Spatial Economics, Springer, vol. 17(3), pages 935-962, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:eurjtl:v:5:y:2016:i:1:d:10.1007_s13676-015-0088-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.