IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v73y2019i1d10.1007_s10589-019-00066-0.html
   My bibliography  Save this article

A new approximation hierarchy for polynomial conic optimization

Author

Listed:
  • Peter J. C. Dickinson

    (University of Groningen
    University of Vienna
    University of Twente)

  • Janez Povh

    (University of Ljubljana)

Abstract

In this paper we consider polynomial conic optimization problems, where the feasible set is defined by constraints in the form of given polynomial vectors belonging to given nonempty closed convex cones, and we assume that all the feasible solutions are non-negative. This family of problems captures in particular polynomial optimization problems (POPs), polynomial semi-definite polynomial optimization problems (PSDPs) and polynomial second-order cone-optimization problems (PSOCPs). We propose a new general hierarchy of linear conic optimization relaxations inspired by an extension of Pólya’s Positivstellensatz for homogeneous polynomials being positive over a basic semi-algebraic cone contained in the non-negative orthant, introduced in Dickinson and Povh (J Glob Optim 61(4):615–625, 2015). We prove that based on some classic assumptions, these relaxations converge monotonically to the optimal value of the original problem. Adding a redundant polynomial positive semi-definite constraint to the original problem drastically improves the bounds produced by our method. We provide an extensive list of numerical examples that clearly indicate the advantages and disadvantages of our hierarchy. In particular, in comparison to the classic approach of sum-of-squares, our new method provides reasonable bounds on the optimal value for POPs, and strong bounds for PSDPs and PSOCPs, even outperforming the sum-of-squares approach in these latter two cases.

Suggested Citation

  • Peter J. C. Dickinson & Janez Povh, 2019. "A new approximation hierarchy for polynomial conic optimization," Computational Optimization and Applications, Springer, vol. 73(1), pages 37-67, May.
  • Handle: RePEc:spr:coopap:v:73:y:2019:i:1:d:10.1007_s10589-019-00066-0
    DOI: 10.1007/s10589-019-00066-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-019-00066-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-019-00066-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Peter Dickinson & Janez Povh, 2015. "On an extension of Pólya’s Positivstellensatz," Journal of Global Optimization, Springer, vol. 61(4), pages 615-625, April.
    2. Laurent, M., 2009. "Sums of squares, moment matrices and optimization over polynomials," Other publications TiSEM 9fef820b-69d2-43f2-a501-e, Tilburg University, School of Economics and Management.
    3. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    4. Jean B. Lasserre & Kim-Chuan Toh & Shouguang Yang, 2017. "A bounded degree SOS hierarchy for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 5(1), pages 87-117, March.
    5. Marandi, Ahmadreza & Dahl, Joachim & de Klerk, Etienne, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Other publications TiSEM 981f1428-4d42-4d3f-9a7a-7, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaolong Kuang & Bissan Ghaddar & Joe Naoum-Sawaya & Luis F. Zuluaga, 2019. "Alternative SDP and SOCP approximations for polynomial optimization," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(2), pages 153-175, June.
    2. Meng-Meng Zheng & Zheng-Hai Huang & Sheng-Long Hu, 2022. "Unconstrained minimization of block-circulant polynomials via semidefinite program in third-order tensor space," Journal of Global Optimization, Springer, vol. 84(2), pages 415-440, October.
    3. Masaki Kimizuka & Sunyoung Kim & Makoto Yamashita, 2019. "Solving pooling problems with time discretization by LP and SOCP relaxations and rescheduling methods," Journal of Global Optimization, Springer, vol. 75(3), pages 631-654, November.
    4. T. D. Chuong & V. Jeyakumar & G. Li, 2019. "A new bounded degree hierarchy with SOCP relaxations for global polynomial optimization and conic convex semi-algebraic programs," Journal of Global Optimization, Springer, vol. 75(4), pages 885-919, December.
    5. Santanu S. Dey & Burak Kocuk & Asteroide Santana, 2020. "Convexifications of rank-one-based substructures in QCQPs and applications to the pooling problem," Journal of Global Optimization, Springer, vol. 77(2), pages 227-272, June.
    6. Xiao Wang & Xinzhen Zhang & Guangming Zhou, 2020. "SDP relaxation algorithms for $$\mathbf {P}(\mathbf {P}_0)$$P(P0)-tensor detection," Computational Optimization and Applications, Springer, vol. 75(3), pages 739-752, April.
    7. Laurent, Monique & Vargas, Luis Felipe, 2022. "Finite convergence of sum-of-squares hierarchies for the stability number of a graph," Other publications TiSEM 3998b864-7504-4cf4-bc1d-f, Tilburg University, School of Economics and Management.
    8. Polyxeni-Margarita Kleniati & Panos Parpas & Berç Rustem, 2010. "Partitioning procedure for polynomial optimization," Journal of Global Optimization, Springer, vol. 48(4), pages 549-567, December.
    9. Laurent, M. & Rostalski, P., 2012. "The approach of moments for polynomial equations," Other publications TiSEM f08f3cd2-b83e-4bf1-9322-a, Tilburg University, School of Economics and Management.
    10. Jie Wang & Victor Magron, 2021. "Exploiting term sparsity in noncommutative polynomial optimization," Computational Optimization and Applications, Springer, vol. 80(2), pages 483-521, November.
    11. Tomohiko Mizutani & Makoto Yamashita, 2013. "Correlative sparsity structures and semidefinite relaxations for concave cost transportation problems with change of variables," Journal of Global Optimization, Springer, vol. 56(3), pages 1073-1100, July.
    12. Fook Wai Kong & Polyxeni-Margarita Kleniati & Berç Rustem, 2012. "Computation of Correlated Equilibrium with Global-Optimal Expected Social Welfare," Journal of Optimization Theory and Applications, Springer, vol. 153(1), pages 237-261, April.
    13. de Klerk, E. & Laurent, M., 2010. "Error bounds for some semidefinite programming approaches to polynomial minimization on the hypercube," Other publications TiSEM 619d9658-77df-4b5e-9868-0, Tilburg University, School of Economics and Management.
    14. Sandra S. Y. Tan & Antonios Varvitsiotis & Vincent Y. F. Tan, 2021. "Analysis of Optimization Algorithms via Sum-of-Squares," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 56-81, July.
    15. Guanglei Wang & Hassan Hijazi, 2018. "Mathematical programming methods for microgrid design and operations: a survey on deterministic and stochastic approaches," Computational Optimization and Applications, Springer, vol. 71(2), pages 553-608, November.
    16. Campos, Juan S. & Misener, Ruth & Parpas, Panos, 2019. "A multilevel analysis of the Lasserre hierarchy," European Journal of Operational Research, Elsevier, vol. 277(1), pages 32-41.
    17. Ahmadreza Marandi & Joachim Dahl & Etienne Klerk, 2018. "A numerical evaluation of the bounded degree sum-of-squares hierarchy of Lasserre, Toh, and Yang on the pooling problem," Annals of Operations Research, Springer, vol. 265(1), pages 67-92, June.
    18. V. Jeyakumar & J. B. Lasserre & G. Li, 2014. "On Polynomial Optimization Over Non-compact Semi-algebraic Sets," Journal of Optimization Theory and Applications, Springer, vol. 163(3), pages 707-718, December.
    19. Immanuel M. Bomze & Vaithilingam Jeyakumar & Guoyin Li, 2018. "Extended trust-region problems with one or two balls: exact copositive and Lagrangian relaxations," Journal of Global Optimization, Springer, vol. 71(3), pages 551-569, July.
    20. Hao Hu & Renata Sotirov, 2021. "The linearization problem of a binary quadratic problem and its applications," Annals of Operations Research, Springer, vol. 307(1), pages 229-249, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:73:y:2019:i:1:d:10.1007_s10589-019-00066-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.