IDEAS home Printed from https://ideas.repec.org/a/spr/epolit/v38y2021i2d10.1007_s40888-020-00182-9.html
   My bibliography  Save this article

Innovation for climate change adaptation and technical efficiency: an empirical analysis in the European agricultural sector

Author

Listed:
  • Sabrina Auci

    (University of Palermo)

  • Nicolò Barbieri

    (University of Ferrara and SEEDS (Sustainability, Environmental Economics and Dynamics Studies))

  • Manuela Coromaldi

    (University of Rome “Niccolò Cusano”)

  • Donatella Vignani

    (ISTAT, Italian National Institute of Statistics)

Abstract

This paper analyses the effect of innovation on firms’ technical efficiency. Using climate-related patent data to proxy for innovation activity in different technological fields, the paper employs a stochastic frontier approach to estimate the impact of innovative efforts on agricultural firms’ technical efficiency taking account of both unobservable heterogeneity and double heteroscedasticity in the inefficiency and idiosyncratic terms. Our findings confirm that innovation has a positive impact on firms’ productivity (technical efficiency). While agricultural firms located in Germany and Sweden are more efficient compared to those in southern countries, all the European countries considered are distant from the maximum production frontier. This leaves room for governments to design economically sustainable agriculture policies, incentivize firms and foster technological innovation to achieve adaptations to present and future changes in climate.

Suggested Citation

  • Sabrina Auci & Nicolò Barbieri & Manuela Coromaldi & Donatella Vignani, 2021. "Innovation for climate change adaptation and technical efficiency: an empirical analysis in the European agricultural sector," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 38(2), pages 597-623, July.
  • Handle: RePEc:spr:epolit:v:38:y:2021:i:2:d:10.1007_s40888-020-00182-9
    DOI: 10.1007/s40888-020-00182-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s40888-020-00182-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s40888-020-00182-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Eric C. & Huang, Weichiao, 2007. "Relative efficiency of R&D activities: A cross-country study accounting for environmental factors in the DEA approach," Research Policy, Elsevier, vol. 36(2), pages 260-273, March.
    2. Yin, Jianhua & Zheng, Mingzheng & Chen, Jian, 2015. "The effects of environmental regulation and technical progress on CO2 Kuznets curve: An evidence from China," Energy Policy, Elsevier, vol. 77(C), pages 97-108.
    3. E Revilla & J Sarkis & A Modrego, 2003. "Evaluating performance of public–private research collaborations: A DEA analysis," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(2), pages 165-174, February.
    4. Guan, Jian Cheng & Yam, Richard C.M. & Mok, Chiu Kam & Ma, Ning, 2006. "A study of the relationship between competitiveness and technological innovation capability based on DEA models," European Journal of Operational Research, Elsevier, vol. 170(3), pages 971-986, May.
    5. Lampe, Hannes W. & Hilgers, Dennis, 2015. "Trajectories of efficiency measurement: A bibliometric analysis of DEA and SFA," European Journal of Operational Research, Elsevier, vol. 240(1), pages 1-21.
    6. Steven Passel & Emanuele Massetti & Robert Mendelsohn, 2017. "A Ricardian Analysis of the Impact of Climate Change on European Agriculture," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(4), pages 725-760, August.
    7. Stern,Nicholas, 2007. "The Economics of Climate Change," Cambridge Books, Cambridge University Press, number 9780521700801, September.
    8. Ernst, Holger, 2001. "Patent applications and subsequent changes of performance: evidence from time-series cross-section analyses on the firm level," Research Policy, Elsevier, vol. 30(1), pages 143-157, January.
    9. Zvi Griliches, 1984. "R&D, Patents, and Productivity," NBER Books, National Bureau of Economic Research, Inc, number gril84-1.
    10. Brian Chi-ang Lin & Siqi Zheng & Nicolò Barbieri & Claudia Ghisetti & Marianna Gilli & Giovanni Marin & Francesco Nicolli, 2016. "A Survey Of The Literature On Environmental Innovation Based On Main Path Analysis," Journal of Economic Surveys, Wiley Blackwell, vol. 30(3), pages 596-623, July.
    11. Zvi Griliches, 1998. "Productivity Growth and R&D at the Business Level: Results from the PIMS Data Base," NBER Chapters, in: R&D and Productivity: The Econometric Evidence, pages 134-156, National Bureau of Economic Research, Inc.
    12. Julian M. Alston & Philip G. Pardey & Jennifer S. James & Matthew A. Anderson, 2009. "The Economics of Agricultural R&D," Annual Review of Resource Economics, Annual Reviews, vol. 1(1), pages 537-566, September.
    13. Willam Greene, 2005. "Fixed and Random Effects in Stochastic Frontier Models," Journal of Productivity Analysis, Springer, vol. 23(1), pages 7-32, January.
    14. Sotnikov, Sergey, 1998. "Evaluating the Effects of Price and Trade Liberalisation on the Technical Efficiency of Agricultural Production in a Transition Economy: The Case of Russia," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 25(3), pages 412-431.
    15. Michele Boldrin & David K. Levine, 2013. "The Case against Patents," Journal of Economic Perspectives, American Economic Association, vol. 27(1), pages 3-22, Winter.
    16. Subal C. Kumbhakar & Christopher F. Parmeter & Valentin Zelenyuk, 2022. "Stochastic Frontier Analysis: Foundations and Advances I," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 8, pages 331-370, Springer.
    17. Shardul Agrawala & Cécile Bordier & Victoria Schreitter & Valerie Karplus, 2012. "Adaptation and Innovation: An Analysis of Crop Biotechnology Patent Data," OECD Environment Working Papers 40, OECD Publishing.
    18. Salvatore Di Falco & Mahmud Yesuf & Gunnar Kohlin & Claudia Ringler, 2012. "Estimating the Impact of Climate Change on Agriculture in Low-Income Countries: Household Level Evidence from the Nile Basin, Ethiopia," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 52(4), pages 457-478, August.
    19. Marshall Burke & Kyle Emerick, 2016. "Adaptation to Climate Change: Evidence from US Agriculture," American Economic Journal: Economic Policy, American Economic Association, vol. 8(3), pages 106-140, August.
    20. Rachel Griffith & Elena Huergo & Jacques Mairesse & Bettina Peters, 2006. "Innovation and Productivity Across Four European Countries," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 22(4), pages 483-498, Winter.
    21. Dawit K. Mekonnen & David J. Spielman & Esendugue Greg Fonsah & Jeffrey H. Dorfman, 2015. "Innovation systems and technical efficiency in developing-country agriculture," Agricultural Economics, International Association of Agricultural Economists, vol. 46(5), pages 689-702, September.
    22. Martina Bozzola & Emanuele Massetti & Robert Mendelsohn & Fabian Capitanio, 2018. "A Ricardian analysis of the impact of climate change on Italian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 45(1), pages 57-79.
    23. Khanal, Uttam & Wilson, Clevo & Hoang, Viet-Ngu & Lee, Boon, 2018. "Farmers' Adaptation to Climate Change, Its Determinants and Impacts on Rice Yield in Nepal," Ecological Economics, Elsevier, vol. 144(C), pages 139-147.
    24. Robert Mendelsohn & Ariel Dinar, 2009. "Climate Change and Agriculture," Books, Edward Elgar Publishing, number 12990.
    25. Janger, Jürgen & Schubert, Torben & Andries, Petra & Rammer, Christian & Hoskens, Machteld, 2017. "The EU 2020 innovation indicator: A step forward in measuring innovation outputs and outcomes?," Research Policy, Elsevier, vol. 46(1), pages 30-42.
    26. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    27. Wang, Eric C., 2007. "R&D efficiency and economic performance: A cross-country analysis using the stochastic frontier approach," Journal of Policy Modeling, Elsevier, vol. 29(2), pages 345-360.
    28. Adam B. Jaffe & Karen Palmer, 1997. "Environmental Regulation And Innovation: A Panel Data Study," The Review of Economics and Statistics, MIT Press, vol. 79(4), pages 610-619, November.
    29. Schlenker, Wolfram & Hanemann, W. Michael & Fisher, Anthony C., 2004. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," Department of Agricultural & Resource Economics, UC Berkeley, Working Paper Series qt65s781bh, Department of Agricultural & Resource Economics, UC Berkeley.
    30. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    31. Olivier Deschênes & Michael Greenstone, 2007. "The Economic Impacts of Climate Change: Evidence from Agricultural Output and Random Fluctuations in Weather," American Economic Review, American Economic Association, vol. 97(1), pages 354-385, March.
    32. Pardey, Philip G. & Alston, Julian M. & Ruttan, Vernon W., 2010. "The Economics of Innovation and Technical Change in Agriculture," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 939-984, Elsevier.
    33. Saleemul Huq & Hannah Reid & Mama Konate & Atiq Rahman & Youba Sokona & Florence Crick, 2004. "Mainstreaming adaptation to climate change in Least Developed Countries (LDCs)," Climate Policy, Taylor & Francis Journals, vol. 4(1), pages 25-43, March.
    34. Meeusen, Wim & van den Broeck, Julien, 1977. "Efficiency Estimation from Cobb-Douglas Production Functions with Composed Error," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(2), pages 435-444, June.
    35. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    36. Salvatore Di Falco & Marcella Veronesi, 2013. "How Can African Agriculture Adapt to Climate Change? A Counterfactual Analysis from Ethiopia," Land Economics, University of Wisconsin Press, vol. 89(4), pages 743-766.
    37. Battese, George E. & Coelli, Tim J., 1988. "Prediction of firm-level technical efficiencies with a generalized frontier production function and panel data," Journal of Econometrics, Elsevier, vol. 38(3), pages 387-399, July.
    38. Diaz-Balteiro, Luis & Casimiro Herruzo, A. & Martinez, Margarita & Gonzalez-Pachon, Jacinto, 2006. "An analysis of productive efficiency and innovation activity using DEA: An application to Spain's wood-based industry," Forest Policy and Economics, Elsevier, vol. 8(7), pages 762-773, October.
    39. Jim Watson & Rob Byrne & David Ockwell & Michele Stua, 2015. "Lessons from China: building technological capabilities for low carbon technology transfer and development," Climatic Change, Springer, vol. 131(3), pages 387-399, August.
    40. de Jong, Stefan P.L. & Wardenaar, Tjerk & Horlings, Edwin, 2016. "Exploring the promises of transdisciplinary research: A quantitative study of two climate research programmes," Research Policy, Elsevier, vol. 45(7), pages 1397-1409.
    41. Julian M. Alston, 2010. "The Benefits from Agricultural Research and Development, Innovation, and Productivity Growth," OECD Food, Agriculture and Fisheries Papers 31, OECD Publishing.
    42. K. Hadri & C. Guermat & J. Whittaker, 2003. "Estimation of technical inefficiency effects using panel data and doubly heteroscedastic stochastic production frontiers," Empirical Economics, Springer, vol. 28(1), pages 203-222, January.
    43. Doris Läpple & Fiona Thorne, 2019. "The Role of Innovation in Farm Economic Sustainability: Generalised Propensity Score Evidence from Irish Dairy Farms," Journal of Agricultural Economics, Wiley Blackwell, vol. 70(1), pages 178-197, February.
    44. Miao, Qing & Popp, David, 2014. "Necessity as the mother of invention: Innovative responses to natural disasters," Journal of Environmental Economics and Management, Elsevier, vol. 68(2), pages 280-295.
    45. Su, Hsin-Ning & Moaniba, Igam M., 2017. "Does innovation respond to climate change? Empirical evidence from patents and greenhouse gas emissions," Technological Forecasting and Social Change, Elsevier, vol. 122(C), pages 49-62.
    46. Popp, David, 2005. "Lessons from patents: Using patents to measure technological change in environmental models," Ecological Economics, Elsevier, vol. 54(2-3), pages 209-226, August.
    47. Chrysovalantis Karafillis & Evaggelos Papanagiotou, 2011. "Innovation and total factor productivity in organic farming," Applied Economics, Taylor & Francis Journals, vol. 43(23), pages 3075-3087.
    48. Temesgen Tadesse Deressa & Rashid M. Hassan, 2009. "Economic Impact of Climate Change on Crop Production in Ethiopia: Evidence from Cross-section Measures," Journal of African Economies, Centre for the Study of African Economies, vol. 18(4), pages 529-554, August.
    49. Mowery, David C. & Nelson, Richard R. & Martin, Ben R., 2010. "Technology policy and global warming: Why new policy models are needed (or why putting new wine in old bottles won't work)," Research Policy, Elsevier, vol. 39(8), pages 1011-1023, October.
    50. Caudill, Steven B & Ford, Jon M & Gropper, Daniel M, 1995. "Frontier Estimation and Firm-Specific Inefficiency Measures in the Presence of Heteroscedasticity," Journal of Business & Economic Statistics, American Statistical Association, vol. 13(1), pages 105-111, January.
    51. Lach, Saul, 1995. "Patents and productivity growth at the industry level: A first look," Economics Letters, Elsevier, vol. 49(1), pages 101-108, July.
    52. Jiancheng Guan & Kaihua Chen, 2010. "Modeling macro-R&D production frontier performance: an application to Chinese province-level R&D," Scientometrics, Springer;Akadémiai Kiadó, vol. 82(1), pages 165-173, January.
    53. Hung-Jen Wang, 2002. "Heteroscedasticity and Non-Monotonic Efficiency Effects of a Stochastic Frontier Model," Journal of Productivity Analysis, Springer, vol. 18(3), pages 241-253, November.
    54. Raushan Bokusheva & Heinrich Hockmann & Subal C. Kumbhakar, 2012. "Dynamics of productivity and technical efficiency in Russian agriculture," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 39(4), pages 611-637, September.
    55. Seo, S. Niggol, 2011. "An analysis of public adaptation to climate change using agricultural water schemes in South America," Ecological Economics, Elsevier, vol. 70(4), pages 825-834, February.
    56. Battese, G E & Coelli, T J, 1995. "A Model for Technical Inefficiency Effects in a Stochastic Frontier Production Function for Panel Data," Empirical Economics, Springer, vol. 20(2), pages 325-332.
    57. Aigner, Dennis & Lovell, C. A. Knox & Schmidt, Peter, 1977. "Formulation and estimation of stochastic frontier production function models," Journal of Econometrics, Elsevier, vol. 6(1), pages 21-37, July.
    58. Greene, William, 2005. "Reconsidering heterogeneity in panel data estimators of the stochastic frontier model," Journal of Econometrics, Elsevier, vol. 126(2), pages 269-303, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fubiao Zhu & Delin Zhuang & Shengwu Jin & Lingling Gao & Rui Chen, 2022. "Effects of air pollution on regional innovation and the mediator role of health: Evidence from China," Growth and Change, Wiley Blackwell, vol. 53(2), pages 628-650, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    2. Sabrina Auci & Laura Castellucci & Manuela Coromaldi, 2021. "How does public spending affect technical efficiency? Some evidence from 15 European countries," Bulletin of Economic Research, Wiley Blackwell, vol. 73(1), pages 108-130, January.
    3. Sabrina Auci & Andrea Pronti, 2020. "Innovation in Irrigation Technologies for Sustainable Agriculture: An Endogenous Switching Analysis on Italian Farms’ Land Productivity," SEEDS Working Papers 1220, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Dec 2020.
    4. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    5. Bareille, François & Chakir, Raja, 2023. "The impact of climate change on agriculture: A repeat-Ricardian analysis," Journal of Environmental Economics and Management, Elsevier, vol. 119(C).
    6. Cristina Cattaneo & Emanuele Massetti, 2019. "Does Harmful Climate Increase Or Decrease Migration? Evidence From Rural Households In Nigeria," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 10(04), pages 1-36, November.
    7. Keller, Michael, 2020. "Wasted windfalls: Inefficiencies in health care spending in oil rich countries," Resources Policy, Elsevier, vol. 66(C).
    8. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    9. Paul, Satya & Shankar, Sriram, 2018. "Modelling Efficiency Effects in a True Fixed Effects Stochastic Frontier," MPRA Paper 87437, University Library of Munich, Germany.
    10. Cullmann, Astrid & Zloczysti, Petra, 2013. "Towards an Efficient Use of R&D ? Accounting for Heterogeneity in the OECD," CEPR Discussion Papers 9345, C.E.P.R. Discussion Papers.
    11. Etienne ESPAGNE & Yoro DIALLO & Sébastien MARCHAND, 2019. "Impacts of Extreme Climate Events on Technical Efficiency in Vietnamese Agriculture," Working Paper c1221ee7-5311-4af0-b1b4-3, Agence française de développement.
    12. Satya Paul & Sriram Shankar, 2020. "Estimating efficiency effects in a panel data stochastic frontier model," Journal of Productivity Analysis, Springer, vol. 53(2), pages 163-180, April.
    13. Huang, K., 2018. "How Large is the Potential Economic Benefit of Agricultural Adaptation to Climate Change?," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277238, International Association of Agricultural Economists.
    14. Giovanni Marin & Alessandro Palma, 2015. "Technology Invention and Diffusion in Residential Energy Consumption. A Stochastic Frontier Approach," Working Papers 2015.104, Fondazione Eni Enrico Mattei.
    15. Kaixing Huang & Nicholas Sim, 2021. "Adaptation May Reduce Climate Damage in Agriculture by Two Thirds," Journal of Agricultural Economics, Wiley Blackwell, vol. 72(1), pages 47-71, February.
    16. Surender Kumar & Madhu Khanna, 2019. "Temperature and production efficiency growth: empirical evidence," Climatic Change, Springer, vol. 156(1), pages 209-229, September.
    17. Cunha, Denis Antonio da & Coelho, Alexandre Braganca & Feres, Jose & Braga, Marcelo Jose, 2012. "Impacts of climate change on Brazilian agriculture: an analysis of irrigation as an adaptation strategy," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 126223, International Association of Agricultural Economists.
    18. Yang, Zhenbing & Shao, Shuai & Li, Chengyu & Yang, Lili, 2020. "Alleviating the misallocation of R&D inputs in China's manufacturing sector: From the perspectives of factor-biased technological innovation and substitution elasticity," Technological Forecasting and Social Change, Elsevier, vol. 151(C).
    19. Eric Njuki & Boris E Bravo-Ureta & Víctor E Cabrera, 2020. "Climatic effects and total factor productivity: econometric evidence for Wisconsin dairy farms," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 47(3), pages 1276-1301.
    20. Chau Trinh Nguyen & Frank Scrimgeour, 2022. "Measuring the impact of climate change on agriculture in Vietnam: A panel Ricardian analysis," Agricultural Economics, International Association of Agricultural Economists, vol. 53(1), pages 37-51, January.

    More about this item

    Keywords

    Agriculture; Adaptation; Climate-related patent; Stochastic frontier approach;
    All these keywords.

    JEL classification:

    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets
    • Q16 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - R&D; Agricultural Technology; Biofuels; Agricultural Extension Services
    • O3 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:epolit:v:38:y:2021:i:2:d:10.1007_s40888-020-00182-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.