IDEAS home Printed from https://ideas.repec.org/a/spr/envpol/v20y2018i1d10.1007_s10018-017-0186-5.html
   My bibliography  Save this article

The permafrost carbon feedback in DICE-2013R modeling and empirical results

Author

Listed:
  • Heiko Wirths

    (University of Augsburg)

  • Joachim Rathmann

    (Institute of GeographyUniversity of Augsburg)

  • Peter Michaelis

    (University of Augsburg)

Abstract

Climate feedback mechanisms that have the potential to intensify global warming have been omitted almost completely in the integrated assessment of climate change and the economy so far. In the present paper, we incorporate the permafrost carbon feedback (PCF) into the well-known integrated assessment model DICE-2013R. We calibrate the parameters for our extended version of DICE-2013R and compute the optimal emission mitigation rates that maximize welfare. Our results indicate that accounting for the PCF leads to an increase in mitigation. Finally, we quantify the economic losses resulting from a climate policy which ignores the impacts of the PCF.

Suggested Citation

  • Heiko Wirths & Joachim Rathmann & Peter Michaelis, 2018. "The permafrost carbon feedback in DICE-2013R modeling and empirical results," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(1), pages 109-124, January.
  • Handle: RePEc:spr:envpol:v:20:y:2018:i:1:d:10.1007_s10018-017-0186-5
    DOI: 10.1007/s10018-017-0186-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10018-017-0186-5
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10018-017-0186-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Martin L. Weitzman, 2012. "GHG Targets as Insurance Against Catastrophic Climate Damages," Journal of Public Economic Theory, Association for Public Economic Theory, vol. 14(2), pages 221-244, March.
    2. Ackerman, Frank & Stanton, Elizabeth A. & Bueno, Ramón, 2010. "Fat tails, exponents, extreme uncertainty: Simulating catastrophe in DICE," Ecological Economics, Elsevier, vol. 69(8), pages 1657-1665, June.
    3. Robert S. Pindyck, 2013. "Climate Change Policy: What Do the Models Tell Us?," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 860-872, September.
    4. Derek Lemoine & Christian Traeger, 2014. "Watch Your Step: Optimal Policy in a Tipping Climate," American Economic Journal: Economic Policy, American Economic Association, vol. 6(1), pages 137-166, February.
    5. Rezai, Armon, 2010. "Recast The Dice And Its Policy Recommendations," Macroeconomic Dynamics, Cambridge University Press, vol. 14(S2), pages 275-289, November.
    6. Andries Hof & Chris Hope & Jason Lowe & Michael Mastrandrea & Malte Meinshausen & Detlef Vuuren, 2012. "The benefits of climate change mitigation in integrated assessment models: the role of the carbon cycle and climate component," Climatic Change, Springer, vol. 113(3), pages 897-917, August.
    7. Mark A. Bradford & William R. Wieder & Gordon B. Bonan & Noah Fierer & Peter A. Raymond & Thomas W. Crowther, 2016. "Managing uncertainty in soil carbon feedbacks to climate change," Nature Climate Change, Nature, vol. 6(8), pages 751-758, August.
    8. Michael D. Mastrandrea & Stephen H. Schneider, 2001. "Integrated assessment of abrupt climatic changes," Climate Policy, Taylor & Francis Journals, vol. 1(4), pages 433-449, December.
    9. Keller, Klaus & Bolker, Benjamin M. & Bradford, D.F.David F., 2004. "Uncertain climate thresholds and optimal economic growth," Journal of Environmental Economics and Management, Elsevier, vol. 48(1), pages 723-741, July.
    10. Mikel González-Eguino & Marc B. Neumann, 2016. "Significant implications of permafrost thawing for climate change control," Climatic Change, Springer, vol. 136(2), pages 381-388, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Richard S.J. Tol, 2020. "The Economic Impact of Weather and Climate," Video Library 2094, Department of Economics, University of Sussex Business School.
    2. Peter Michaelis & Heiko Wirths, 2020. "DICE-RD: an implementation of rate-related damages in the DICE model," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 22(4), pages 555-584, October.
    3. Christian Fries & Lennart Quante, 2023. "Intergenerational Equity in Models of Climate Change Mitigation: Stochastic Interest Rates introduce Adverse Effects, but (Non-linear) Funding Costs can Improve Intergenerational Equity," Papers 2309.16186, arXiv.org, revised Sep 2023.
    4. Christian P. Fries & Lennart Quante, 2023. "Intergenerational Equitable Climate Change Mitigation: Negative Effects of Stochastic Interest Rates; Positive Effects of Financing," Papers 2312.07614, arXiv.org, revised May 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2019. "Social Cost of Carbon under stochastic tipping points: when does risk play a role?," Working Papers hal-02408904, HAL.
    2. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.t., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," LSE Research Online Documents on Economics 114941, London School of Economics and Political Science, LSE Library.
    3. Rising, James A. & Taylor, Charlotte & Ives, Matthew C. & Ward, Robert E.T., 2022. "Challenges and innovations in the economic evaluation of the risks of climate change," Ecological Economics, Elsevier, vol. 197(C).
    4. Yongyang Cai & Thomas S. Lontzek, 2019. "The Social Cost of Carbon with Economic and Climate Risks," Journal of Political Economy, University of Chicago Press, vol. 127(6), pages 2684-2734.
    5. van den Bergh, J.C.J.M. & Botzen, W.J.W., 2015. "Monetary valuation of the social cost of CO2 emissions: A critical survey," Ecological Economics, Elsevier, vol. 114(C), pages 33-46.
    6. Pezzey, John C.V. & Burke, Paul J., 2014. "Towards a more inclusive and precautionary indicator of global sustainability," Ecological Economics, Elsevier, vol. 106(C), pages 141-154.
    7. Mariia Belaia & Michael Funke & Nicole Glanemann, 2017. "Global Warming and a Potential Tipping Point in the Atlantic Thermohaline Circulation: The Role of Risk Aversion," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 67(1), pages 93-125, May.
    8. Nicolas Taconet & Céline Guivarch & Antonin Pottier, 2021. "Social Cost of Carbon Under Stochastic Tipping Points," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 78(4), pages 709-737, April.
    9. Loïc Berger & Johannes Emmerling & Massimo Tavoni, 2017. "Managing Catastrophic Climate Risks Under Model Uncertainty Aversion," Post-Print hal-03027150, HAL.
    10. Oliver D. Bettis & Simon Dietz & Nick G. Silver, 2017. "The risk of climate ruin," Climatic Change, Springer, vol. 140(2), pages 109-118, January.
    11. Chang, Charles W., 2014. "DICESC: Optimal Policy in a Stochastic Control Framework," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170831, Agricultural and Applied Economics Association.
    12. Louise Kessler, 2017. "Estimating The Economic Impact Of The Permafrost Carbon Feedback," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(02), pages 1-23, May.
    13. Wonjun Chang & Thomas F. Rutherford, 2017. "Catastrophic Thresholds, Bayesian Learning And The Robustness Of Climate Policy Recommendations," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 1-23, November.
    14. Richard S. J. Tol & In Chang Hwang & Frédéric Reynès, 2012. "The Effect of Learning on Climate Policy under Fat-tailed Uncertainty," Working Paper Series 5312, Department of Economics, University of Sussex Business School.
    15. Sandra Gschnaller, 2020. "The albedo loss from the melting of the Greenland ice sheet and the social cost of carbon," Climatic Change, Springer, vol. 163(4), pages 2201-2231, December.
    16. Ikefuji, Masako & Laeven, Roger J.A. & Magnus, Jan R. & Muris, Chris, 2020. "Expected utility and catastrophic risk in a stochastic economy–climate model," Journal of Econometrics, Elsevier, vol. 214(1), pages 110-129.
    17. Simon Dietz & Nicholas Stern, 2014. "Endogenous growth, convexity of damages and climate risk: how Nordhaus� framework supports deep cuts in carbon emissions," GRI Working Papers 159, Grantham Research Institute on Climate Change and the Environment.
    18. Nicholas Stern, 2013. "The Structure of Economic Modeling of the Potential Impacts of Climate Change: Grafting Gross Underestimation of Risk onto Already Narrow Science Models," Journal of Economic Literature, American Economic Association, vol. 51(3), pages 838-859, September.
    19. Louise Kessler, 2015. "Estimating the economic impact of the permafrost carbon feedback," GRI Working Papers 219, Grantham Research Institute on Climate Change and the Environment.
    20. Vogt-Schilb, Adrien & Meunier, Guy & Hallegatte, Stéphane, 2018. "When starting with the most expensive option makes sense: Optimal timing, cost and sectoral allocation of abatement investment," Journal of Environmental Economics and Management, Elsevier, vol. 88(C), pages 210-233.

    More about this item

    Keywords

    Integrated assessment; DICE model; Climate feedbacks; Permafrost;
    All these keywords.

    JEL classification:

    • O44 - Economic Development, Innovation, Technological Change, and Growth - - Economic Growth and Aggregate Productivity - - - Environment and Growth
    • Q54 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Climate; Natural Disasters and their Management; Global Warming
    • Q58 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Government Policy

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:envpol:v:20:y:2018:i:1:d:10.1007_s10018-017-0186-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.