IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v26y2024i8d10.1007_s10668-023-03487-4.html
   My bibliography  Save this article

Decarbonizing China’s cities with the lowest cost

Author

Listed:
  • Huiming Xie

    (Ningbo University)

  • Limin Du

    (Zhejiang University
    Zhejiang University)

  • Chu Wei

    (Renmin University of China)

Abstract

Cities, which are the primary economic engine and emission source in China, accounted for 70% of the country’s total energy-related CO2 emissions in 2010. The development of low-carbon cities has become the first priority of policymakers. Low-carbon cities enhance competition in the long run but also inevitably impose costs in the short term. To investigate the associated abatement costs of CO2 toward low-carbon cities, we apply the directional distance function on panel data covering 104 Chinese prefecture-level and above cities from 2001 to 2014. Our results show that, on average, the cost to control one ton of CO2 is 1070 CNY, or equivalent to 129 US $. This cost shows great individual heterogeneity and time variation; the year 2011 witnesses a significant reversal of the marginal abatement cost of CO2. It is because China begins implementing a mandatory CO2 intensity reduction target for the 12th Five-Year Plan (FYP). We establish a four-quadrant matrix framework to identify low-carbon cities and track the low-carbon transition path based on emission indicators (total emissions, per capita emissions, and emission intensity) and abatement cost pairs. Among the four types of emission-cost patterns, more cities are scattered in the "low emission-level and high abatement-cost" quadrant, and eight cities are clarified as low-carbon cities in 2014. In terms of per capita emissions and abatement costs, the “high-per-capita-emission and low-abatement-cost” club include five cities in 2001, while this number rises to seven members in 2014. Most cities are also located in the “low-emission-intensity and low-abatement-cost” zone when the relationship between CO2 intensity and abatement cost is considered. Our results call for policymakers' attention to hot spots and emission-based, per capita emission-based, or intensity-based city-level decarbonizing policies.

Suggested Citation

  • Huiming Xie & Limin Du & Chu Wei, 2024. "Decarbonizing China’s cities with the lowest cost," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 26(8), pages 20507-20530, August.
  • Handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03487-4
    DOI: 10.1007/s10668-023-03487-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-023-03487-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-023-03487-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Soowon & Cho, Junyoung & Heo, Jae & Kang, Junsuk & Kobashi, Takuro, 2022. "Energy infrastructure transitions with PV and EV combined systems using techno-economic analyses for decarbonization in cities," Applied Energy, Elsevier, vol. 319(C).
    2. Glaeser, Edward L. & Kahn, Matthew E., 2010. "The greenness of cities: Carbon dioxide emissions and urban development," Journal of Urban Economics, Elsevier, vol. 67(3), pages 404-418, May.
    3. Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
    4. De Cara, Stéphane & Jayet, Pierre-Alain, 2011. "Marginal abatement costs of greenhouse gas emissions from European agriculture, cost effectiveness, and the EU non-ETS burden sharing agreement," Ecological Economics, Elsevier, vol. 70(9), pages 1680-1690, July.
    5. Rolf Färe & Carlos Martins-Filho & Michael Vardanyan, 2010. "On functional form representation of multi-output production technologies," Journal of Productivity Analysis, Springer, vol. 33(2), pages 81-96, April.
    6. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    7. Ni, Jinlan & Wei, Chu & Du, Limin, 2015. "Revealing the political decision toward Chinese carbon abatement: Based on equity and efficiency criteria," Energy Economics, Elsevier, vol. 51(C), pages 609-621.
    8. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    9. Du, Limin & Wei, Chu & Cai, Shenghua, 2012. "Economic development and carbon dioxide emissions in China: Provincial panel data analysis," China Economic Review, Elsevier, vol. 23(2), pages 371-384.
    10. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    11. M. Murty & Surender Kumar & Kishore Dhavala, 2007. "Measuring environmental efficiency of industry: a case study of thermal power generation in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 31-50, September.
    12. Mi, Zhifu & Zhang, Yunkun & Guan, Dabo & Shan, Yuli & Liu, Zhu & Cong, Ronggang & Yuan, Xiao-Chen & Wei, Yi-Ming, 2016. "Consumption-based emission accounting for Chinese cities," Applied Energy, Elsevier, vol. 184(C), pages 1073-1081.
    13. Kennedy, Scott & Sgouridis, Sgouris, 2011. "Rigorous classification and carbon accounting principles for low and Zero Carbon Cities," Energy Policy, Elsevier, vol. 39(9), pages 5259-5268, September.
    14. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    15. I-Chun Catherine Chang & Helga Leitner & Eric Sheppard, 2016. "A Green Leap Forward? Eco-State Restructuring and the Tianjin-Binhai Eco-City Model," Regional Studies, Taylor & Francis Journals, vol. 50(6), pages 929-943, June.
    16. Rolf Färe & Shawna Grosskopf, 1998. "Shadow Pricing of Good and Bad Commodities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 80(3), pages 584-590.
    17. Nong, Duy & Simshauser, Paul & Nguyen, Duong Binh, 2021. "Greenhouse gas emissions vs CO2 emissions: Comparative analysis of a global carbon tax," Applied Energy, Elsevier, vol. 298(C).
    18. Carolyn Fischer & Richard D. Morgenstern, 2006. "Carbon Abatement Costs: Why the Wide Range of Estimates?," The Energy Journal, International Association for Energy Economics, vol. 0(Number 2), pages 73-86.
    19. Xu, Lan & Yang, Jun & Cheng, Jixin & Dong, Hanghang, 2022. "How has China's low-carbon city pilot policy influenced its CO2 abatement costs? Analysis from the perspective of the shadow price," Energy Economics, Elsevier, vol. 115(C).
    20. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    21. Josef Maroušek & Anna Maroušková & Tomáš Zoubek & Petr Bartoš, 2022. "Economic impacts of soil fertility degradation by traces of iron from drinking water treatment," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 4835-4844, April.
    22. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    23. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.
    24. Klepper, Gernot & Peterson, Sonja, 2006. "Marginal abatement cost curves in general equilibrium: The influence of world energy prices," Resource and Energy Economics, Elsevier, vol. 28(1), pages 1-23, January.
    25. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    26. Färe, Rolf & Grosskopf, Shawna & Pasurka, Carl A., 2007. "Environmental production functions and environmental directional distance functions," Energy, Elsevier, vol. 32(7), pages 1055-1066.
    27. Limin Du & Aoife Hanley & Chu Wei, 2015. "Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 191-216, June.
    28. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    29. Dewi, Retno Gumilang & Siagian, Ucok Welo Risma & Asmara, Briantama & Anggraini, Syahrina Dyah & Ichihara, Jun & Kobashi, Takuro, 2023. "Equitable, affordable, and deep decarbonization pathways for low-latitude developing cities by rooftop photovoltaics integrated with electric vehicles," Applied Energy, Elsevier, vol. 332(C).
    30. Wei, Chu & Ni, Jinlan & Du, Limin, 2012. "Regional allocation of carbon dioxide abatement in China," China Economic Review, Elsevier, vol. 23(3), pages 552-565.
    31. Lee, Chia-Yen & Zhou, Peng, 2015. "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010," Energy Economics, Elsevier, vol. 51(C), pages 493-502.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    2. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    3. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    4. Wu, Yinyin & Yu, Jie & Song, Malin & Chen, Jiandong & Hou, Wenxuan, 2021. "Shadow prices of industrial air pollutant emissions in China," Economic Modelling, Elsevier, vol. 94(C), pages 726-736.
    5. Wang, Zhaohua & Song, Yanwu & Shen, Zhiyang, 2022. "Global sustainability of carbon shadow pricing: The distance between observed and optimal abatement costs," Energy Economics, Elsevier, vol. 110(C).
    6. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    7. Limin Du & Aoife Hanley & Chu Wei, 2015. "Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 191-216, June.
    8. Ma, Chunbo & Hailu, Atakelty & You, Chaoying, 2019. "A critical review of distance function based economic research on China’s marginal abatement cost of carbon dioxide emissions," Energy Economics, Elsevier, vol. 84(C).
    9. Jindal, Abhinav & Nilakantan, Rahul & Sinha, Avik, 2024. "CO2 emissions abatement costs and drivers for Indian thermal power industry," Energy Policy, Elsevier, vol. 184(C).
    10. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    11. Ke Wang & Linan Che & Chunbo Ma & Yi-Ming Wei, 2017. "The Shadow Price of CO2 Emissions in China's Iron and Steel Industry," CEEP-BIT Working Papers 105, Center for Energy and Environmental Policy Research (CEEP), Beijing Institute of Technology.
    12. Ye Wang & Yunguo Lu & Lin Zhang, 2021. "Opportunity Cost of Environmental Regulation in China’s Industrial Sector," IJERPH, MDPI, vol. 18(16), pages 1-19, August.
    13. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    14. Shen, Zhiyang & Bai, Kaixuan & Hong, Tianyang & Balezentis, Tomas, 2021. "Evaluation of carbon shadow price within a non-parametric meta-frontier framework: The case of OECD, ASEAN and BRICS," Applied Energy, Elsevier, vol. 299(C).
    15. Wu, Jianxin & Ma, Chunbo & Tang, Kai, 2019. "The static and dynamic heterogeneity and determinants of marginal abatement cost of CO2 emissions in Chinese cities," Energy, Elsevier, vol. 178(C), pages 685-694.
    16. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    17. Zhou, Yi & Zhou, Wenji & Wei, Chu, 2023. "Environmental performance of the Chinese cement enterprise: An empirical analysis using a text-based directional vector," Energy Economics, Elsevier, vol. 125(C).
    18. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    19. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    20. Tamaki, Tetsuya & Shin, Kong Joo & Nakamura, Hiroki & Fujii, Hidemichi & Managi, Shunsuke, 2018. "Shadow prices and production inefficiency of mineral resources," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 111-121.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:26:y:2024:i:8:d:10.1007_s10668-023-03487-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.