IDEAS home Printed from https://ideas.repec.org/a/sae/engenv/v32y2021i3p403-423.html
   My bibliography  Save this article

Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches

Author

Listed:
  • Dong-Hyun Oh
  • JongWuk Ahn
  • Sinwoo Lee
  • Hyundo Choi

Abstract

This paper measures the technical inefficiency and the shadow price of Korean fossil-fuel generation companies (GENCOs) between 2001 and 2016 at the firm-level. To obtain robust empirical results, this study employs both commonly used deterministic and stochastic estimation methods. The empirical results are as follows: the inefficiency estimates are approximately 0.09 (deterministic) and 0.08 (stochastic); the estimates of CO 2 shadow price, in KRW/tCO 2 , are 82,758 (deterministic) and 49,830 (stochastic), which shows high volatility in the annual average shadow price. In addition, we find that the results of the deterministic method without any random errors show a large variation in the trends of technical inefficiency and shadow price, while the stochastic method with random errors yields only moderate volatility. Our empirical results are expected to assist policymakers in determining how much potential mitigation can be achieved through improved efficiency, and the range of the CO 2 shadow price will contribute to more efficient policy tools.

Suggested Citation

  • Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
  • Handle: RePEc:sae:engenv:v:32:y:2021:i:3:p:403-423
    DOI: 10.1177/0958305X20932547
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0958305X20932547
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0958305X20932547?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tengfei Huo & Hong Ren & Weiguang Cai & Wei Feng & Miaohan Tang & Nan Zhou, 2018. "The total-factor energy productivity growth of China’s construction industry: evidence from the regional level," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 92(3), pages 1593-1616, July.
    2. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    3. Choi, Yongrok & Zhang, Ning & Zhou, P., 2012. "Efficiency and abatement costs of energy-related CO2 emissions in China: A slacks-based efficiency measure," Applied Energy, Elsevier, vol. 98(C), pages 198-208.
    4. Coggins, Jay S. & Swinton, John R., 1996. "The Price of Pollution: A Dual Approach to Valuing SO2Allowances," Journal of Environmental Economics and Management, Elsevier, vol. 30(1), pages 58-72, January.
    5. Rezek, Jon P. & Campbell, Randall C., 2007. "Cost estimates for multiple pollutants: A maximum entropy approach," Energy Economics, Elsevier, vol. 29(3), pages 503-519, May.
    6. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    7. R. H. Coase, 2013. "The Problem of Social Cost," Journal of Law and Economics, University of Chicago Press, vol. 56(4), pages 837-877.
    8. M. Murty & Surender Kumar & Kishore Dhavala, 2007. "Measuring environmental efficiency of industry: a case study of thermal power generation in India," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 38(1), pages 31-50, September.
    9. Song, Junmo & Oh, Dong-hyun & Kang, Jiwon, 2017. "Robust estimation in stochastic frontier models," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 243-267.
    10. Léopold Simar, 2003. "Detecting Outliers in Frontier Models: A Simple Approach," Journal of Productivity Analysis, Springer, vol. 20(3), pages 391-424, November.
    11. Myunghun Lee, 2019. "Allocative efficiency, potential cost savings, and power supply price markdown in Korean electric power sector," Energy & Environment, , vol. 30(4), pages 617-628, June.
    12. Ching-Cheng Lu & Liang-Chun Lu, 2019. "Evaluating the energy efficiency of European Union countries: The dynamic data envelopment analysis," Energy & Environment, , vol. 30(1), pages 27-43, February.
    13. Choi, Hyundo & Oh, Inha, 2010. "Analysis of product efficiency of hybrid vehicles and promotion policies," Energy Policy, Elsevier, vol. 38(5), pages 2262-2271, May.
    14. John R. Swinton, 1998. "At What Cost do We Reduce Pollution? Shadow Prices of SO2, Emissions," The Energy Journal, , vol. 19(4), pages 63-83, October.
    15. Park, Hojeong & Lim, Jaekyu, 2009. "Valuation of marginal CO2 abatement options for electric power plants in Korea," Energy Policy, Elsevier, vol. 37(5), pages 1834-1841, May.
    16. Ji, D.J. & Zhou, P., 2020. "Marginal abatement cost, air pollution and economic growth: Evidence from Chinese cities," Energy Economics, Elsevier, vol. 86(C).
    17. Manish Gupta, 2006. "Costs of Reducing Greenhouse Gas Emissions: A Case Study of India’s Power Generation Sector," Working Papers 2006.147, Fondazione Eni Enrico Mattei.
    18. Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
    19. David Maradan & Anatoli Vassiliev, 2005. "Marginal Costs of Carbon Dioxide Abatement: Empirical Evidence from Cross-Country Analysis," Swiss Journal of Economics and Statistics (SJES), Swiss Society of Economics and Statistics (SSES), vol. 141(III), pages 377-410, September.
    20. Lee, Myunghun & Zhang, Ning, 2012. "Technical efficiency, shadow price of carbon dioxide emissions, and substitutability for energy in the Chinese manufacturing industries," Energy Economics, Elsevier, vol. 34(5), pages 1492-1497.
    21. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    22. Fare, Rolf & Grosskopf, Shawna & Noh, Dong-Woon & Weber, William, 2005. "Characteristics of a polluting technology: theory and practice," Journal of Econometrics, Elsevier, vol. 126(2), pages 469-492, June.
    23. Gupta, Manish, 2006. "Costs of Reducing Greenhouse Gas Emissions: A Case Study of India's Power Generation Sector," Climate Change Modelling and Policy Working Papers 12038, Fondazione Eni Enrico Mattei (FEEM).
    24. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    25. Lee, Chia-Yen & Zhou, Peng, 2015. "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010," Energy Economics, Elsevier, vol. 51(C), pages 493-502.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Longze & Zhang, Yan & Li, Zhehan & Huang, Qiyu & Xiao, Yuxin & Yi, Xinxing & Ma, Yiyi & Li, Meicheng, 2023. "P2P trading mode for real-time coupled electricity and carbon markets based on a new indicator green energy," Energy, Elsevier, vol. 285(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    2. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    3. Jindal, Abhinav & Nilakantan, Rahul & Sinha, Avik, 2024. "CO2 emissions abatement costs and drivers for Indian thermal power industry," Energy Policy, Elsevier, vol. 184(C).
    4. Lee, Sang-choon & Oh, Dong-hyun & Lee, Jeong-dong, 2014. "A new approach to measuring shadow price: Reconciling engineering and economic perspectives," Energy Economics, Elsevier, vol. 46(C), pages 66-77.
    5. Molinos-Senante, María & Hanley, Nick & Sala-Garrido, Ramón, 2015. "Measuring the CO2 shadow price for wastewater treatment: A directional distance function approach," Applied Energy, Elsevier, vol. 144(C), pages 241-249.
    6. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    7. Lee, Chia-Yen & Zhou, Peng, 2015. "Directional shadow price estimation of CO2, SO2 and NOx in the United States coal power industry 1990–2010," Energy Economics, Elsevier, vol. 51(C), pages 493-502.
    8. Rakesh Kumar Jain & Surender Kumar, 2018. "Shadow price of CO2 emissions in Indian thermal power sector," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 20(4), pages 879-902, October.
    9. Lee, Chia-Yen & Wang, Ke, 2019. "Nash marginal abatement cost estimation of air pollutant emissions using the stochastic semi-nonparametric frontier," European Journal of Operational Research, Elsevier, vol. 273(1), pages 390-400.
    10. Du, Limin & Mao, Jie, 2015. "Estimating the environmental efficiency and marginal CO2 abatement cost of coal-fired power plants in China," Energy Policy, Elsevier, vol. 85(C), pages 347-356.
    11. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    12. Wei, Chu & Löschel, Andreas & Liu, Bing, 2013. "An empirical analysis of the CO2 shadow price in Chinese thermal power enterprises," Energy Economics, Elsevier, vol. 40(C), pages 22-31.
    13. Zhang, Ning & Huang, Xuhui & Liu, Yunxiao, 2021. "The cost of low-carbon transition for China's coal-fired power plants: A quantile frontier approach," Technological Forecasting and Social Change, Elsevier, vol. 169(C).
    14. Zhang, Ning & Huang, Xuhui & Qi, Chao, 2022. "The effect of environmental regulation on the marginal abatement cost of industrial firms: Evidence from the 11th Five-Year Plan in China," Energy Economics, Elsevier, vol. 112(C).
    15. Limin Du & Aoife Hanley & Chu Wei, 2015. "Marginal Abatement Costs of Carbon Dioxide Emissions in China: A Parametric Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(2), pages 191-216, June.
    16. Kyohei Matsushita & Kota Asano, 2014. "Reducing CO 2 emissions of Japanese thermal power companies: a directional output distance function approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 1-19, January.
    17. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    18. Du, Limin & Lu, Yunguo & Ma, Chunbo, 2022. "Carbon efficiency and abatement cost of China's coal-fired power plants," Technological Forecasting and Social Change, Elsevier, vol. 175(C).
    19. Ye Wang & Yunguo Lu & Lin Zhang, 2021. "Opportunity Cost of Environmental Regulation in China’s Industrial Sector," IJERPH, MDPI, vol. 18(16), pages 1-19, August.
    20. Yongrok Choi & Chao Qi, 2019. "Is South Korea’s Emission Trading Scheme Effective? An Analysis Based on the Marginal Abatement Cost of Coal-Fueled Power Plants," Sustainability, MDPI, vol. 11(9), pages 1-12, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:engenv:v:32:y:2021:i:3:p:403-423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.