IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i6d10.1007_s10668-022-02251-4.html
   My bibliography  Save this article

Life cycle cost–benefit efficiency of food waste treatment technologies in China

Author

Listed:
  • Ziyao Fan

    (Shanghai Jiao Tong University)

  • Huijuan Dong

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University)

  • Yong Geng

    (Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    Shanghai Jiao Tong University
    China Institute for Urban Governance, Shanghai Jiao Tong University)

  • Minoru Fujii

    (National Institute for Environmental Studies)

Abstract

Food waste treatment and utilization is important in sustainable waste management. Unlike most existing studies on environmental impact analysis of food waste treatment technologies, this study conducted both environmental impacts and economic cost analysis of food waste treatment technologies using life cycle assessment and life cycle cost methods. Five promising technologies in China are compared, including anaerobic digestion (AD), aerobic composting combined digestion (AC + AD), aerobic composting (AC), biochemical processor (BP), and anaerobic digestion combined feed processing technology (AD + FP). Results show that the rank of environmental impact is AD + FP > AD > BP > AC + AD > AC, while the rank of LCC is AC + AD > AD + FP > BP > AC > AD. Aerobic technology usually has a lower environmental impact, but slightly higher economic cost compared with anaerobic technology, about 188 CNY/t and 249 CNY/t, respectively. AD + FP has the best environmental performance (4.5E−11/t), and AC + AD has the best economic performance (5.3 CNY/t) due to profits from soil amendment selling. Mixed technologies AC + AD and AD + FP exhibit obvious better cost–benefit efficiency than single treatment technology AC or AD and thus are suggested to be set priority in food waste treatment. BP has relatively good performance and is worthy of consideration for regions with small treatment demand.

Suggested Citation

  • Ziyao Fan & Huijuan Dong & Yong Geng & Minoru Fujii, 2023. "Life cycle cost–benefit efficiency of food waste treatment technologies in China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 4935-4956, June.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02251-4
    DOI: 10.1007/s10668-022-02251-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-022-02251-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-022-02251-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Changqing & Shi, Wenxiao & Hong, Jinglan & Zhang, Fangfang & Chen, Wei, 2015. "Life cycle assessment of food waste-based biogas generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 169-177.
    2. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    3. Yong, Zihan & Dong, Yulin & Zhang, Xu & Tan, Tianwei, 2015. "Anaerobic co-digestion of food waste and straw for biogas production," Renewable Energy, Elsevier, vol. 78(C), pages 527-530.
    4. Micky A. Babalola, 2020. "A Benefit–Cost Analysis of Food and Biodegradable Waste Treatment Alternatives: The Case of Oita City, Japan," Sustainability, MDPI, vol. 12(5), pages 1-17, March.
    5. Giovanni Mondello & Roberta Salomone & Giuseppe Ioppolo & Giuseppe Saija & Sergio Sparacia & Maria Claudia Lucchetti, 2017. "Comparative LCA of Alternative Scenarios for Waste Treatment: The Case of Food Waste Production by the Mass-Retail Sector," Sustainability, MDPI, vol. 9(5), pages 1-18, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Cui Tiening & Fu Yuqiang, 2024. "Assessment of the Efficiency of Synergistic Management of Urban Domestic Waste Management and Carbon Emission Reduction in China," Advances in Management and Applied Economics, SCIENPRESS Ltd, vol. 14(6), pages 1-17.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Hewen & Yang, Qing & Gul, Eid & Shi, Mengmeng & Li, Jiashuo & Yang, Minjiao & Yang, Haiping & Chen, Bin & Zhao, Haibo & Yan, Yunjun & Erdoğan, Güneş & Bartocci, Pietro & Fantozzi, Francesco, 2021. "Decarbonizing university campuses through the production of biogas from food waste: An LCA analysis," Renewable Energy, Elsevier, vol. 176(C), pages 565-578.
    2. Tian, Hailin & Wang, Xiaonan & Lim, Ee Yang & Lee, Jonathan T.E. & Ee, Alvin W.L. & Zhang, Jingxin & Tong, Yen Wah, 2021. "Life cycle assessment of food waste to energy and resources: Centralized and decentralized anaerobic digestion with different downstream biogas utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Olkis, Christopher & Brandani, Stefano & Santori, Giulio, 2019. "Design and experimental study of a small scale adsorption desalinator," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    4. Jones, R.E. & Speight, R.E. & Blinco, J.L. & O'Hara, I.M., 2022. "Biorefining within food loss and waste frameworks: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    5. Bacenetti, Jacopo & Sala, Cesare & Fusi, Alessandra & Fiala, Marco, 2016. "Agricultural anaerobic digestion plants: What LCA studies pointed out and what can be done to make them more environmentally sustainable," Applied Energy, Elsevier, vol. 179(C), pages 669-686.
    6. De Clercq, Djavan & Wen, Zongguo & Fei, Fan, 2017. "Economic performance evaluation of bio-waste treatment technology at the facility level," Resources, Conservation & Recycling, Elsevier, vol. 116(C), pages 178-184.
    7. Zhang, Jingxin & Hu, Qiang & Qu, Yiyuan & Dai, Yanjun & He, Yiliang & Wang, Chi-Hwa & Tong, Yen Wah, 2020. "Integrating food waste sorting system with anaerobic digestion and gasification for hydrogen and methane co-production," Applied Energy, Elsevier, vol. 257(C).
    8. Zheng, Lei & Cheng, Shikun & Han, Yanzhao & Wang, Min & Xiang, Yue & Guo, Jiali & Cai, Di & Mang, Heinz-Peter & Dong, Taili & Li, Zifu & Yan, Zhengxu & Men, Yu, 2020. "Bio-natural gas industry in China: Current status and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    9. Chen, Ting & Shen, Dongsheng & Jin, Yiying & Li, Hailong & Yu, Zhixin & Feng, Huajun & Long, Yuyang & Yin, Jun, 2017. "Comprehensive evaluation of environ-economic benefits of anaerobic digestion technology in an integrated food waste-based methane plant using a fuzzy mathematical model," Applied Energy, Elsevier, vol. 208(C), pages 666-677.
    10. Indranil De & Rooba Hasan & Mubashshir Iqbal, 2022. "Natural Treatment Systems and Importance of Social Cost Benefit Analysis in Developing Countries: A Critical Review," Sustainability, MDPI, vol. 14(7), pages 1-15, March.
    11. Tong, Huanhuan & Shen, Ye & Zhang, Jingxin & Wang, Chi-Hwa & Ge, Tian Shu & Tong, Yen Wah, 2018. "A comparative life cycle assessment on four waste-to-energy scenarios for food waste generated in eateries," Applied Energy, Elsevier, vol. 225(C), pages 1143-1157.
    12. Hollas, C.E. & Bolsan, A.C. & Chini, A. & Venturin, B. & Bonassa, G. & Cândido, D. & Antes, F.G. & Steinmetz, R.L.R. & Prado, N.V. & Kunz, A., 2021. "Effects of swine manure storage time on solid-liquid separation and biogas production: A life-cycle assessment approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    13. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    14. Deng, Yawen & Ng Tsan Sheng, Adam & Xu, Jiuping, 2023. "Authority-enterprise equilibrium based mixed subsidy mechanism for the value-added treatment of food waste," Energy, Elsevier, vol. 282(C).
    15. Taofeeq Durojaye Moshood & James Olabode Bamidele Rotimi & Funmilayo Ebun Rotimi, 2024. "Combating Greenwashing of Construction Products in New Zealand and Australia: A Critical Analysis of Environmental Product Declarations," Sustainability, MDPI, vol. 16(22), pages 1-22, November.
    16. Kainthola, Jyoti & Kalamdhad, Ajay S. & Goud, Vaibhav V., 2020. "Optimization of process parameters for accelerated methane yield from anaerobic co-digestion of rice straw and food waste," Renewable Energy, Elsevier, vol. 149(C), pages 1352-1359.
    17. Chen, Wei & Geng, Yong & Hong, Jinglan & Kua, Harn Wei & Xu, Changqing & Yu, Nan, 2017. "Life cycle assessment of antibiotic mycelial residues management in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 830-838.
    18. Wang, Ping & Wang, Jinman & Qin, Qian & Wang, Hongdan, 2017. "Life cycle assessment of magnetized fly-ash compound fertilizer production: A case study in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 706-713.
    19. Chen, Guanyi & Liu, Gang & Yan, Beibei & Shan, Rui & Wang, Jianan & Li, Ting & Xu, Weiwei, 2016. "Experimental study of co-digestion of food waste and tall fescue for bio-gas production," Renewable Energy, Elsevier, vol. 88(C), pages 273-279.
    20. Carlo Ingrao & Claudia Arcidiacono & Valentina Siracusa & Monia Niero & Marzia Traverso, 2021. "Life Cycle Sustainability Analysis of Resource Recovery from Waste Management Systems in a Circular Economy Perspective Key Findings from This Special Issue," Resources, MDPI, vol. 10(4), pages 1-9, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:6:d:10.1007_s10668-022-02251-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.