IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v25y2023i1d10.1007_s10668-021-02082-9.html
   My bibliography  Save this article

Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil

Author

Listed:
  • Lucas Eduardo Oliveira Aparecido

    (IFMS)

  • Kamila Cunha Meneses

    (State University of São Paulo‐UNESP)

  • Pedro Antonio Lorençone

    (IFMS)

  • João Antonio Lorençone

    (IFMS)

  • Jose Reinaldo da Silva Cabral de Moraes

    (IFMS)

  • Glauco Souza Rolim

    (State University of São Paulo‐UNESP)

Abstract

Air temperature and precipitation are the elements that most impact the development of plants and are essential for good agricultural planning. Thus, it aimed to evaluate climate change in Maranhão of Brazil using the Thornthwaite (Geographical Review 38:55–94, 1948) climate classification. It used historical series of precipitation and air temperature between 1980 and 2016, obtained by the National Institute of Meteorology of Brazil (INMET). Reference evapotranspiration (ETo) was estimated using the Thornthwaite (Geographical Review 38:55–94, 1948) method and thus calculated the water balance by Thornthwaite and Mather (Laboratory of Climatology 8:104) for all locations in the studied state. Thornthwaite (Geographical Review 38:55–94, 1948) moisture index was used to classify localities to their level of humidity or aridity. We used the scenarios RCP-2.6, RCP-4, RCP-6, and RCP-8.5 for analyzing twenty-first-century projections (2041–2060 and 2061–2080 periods). The average values of air temperature, rainfall, and reference evapotranspiration in the state of Maranhão were 27.30(± 0.53) °C, 1678.52 (± 377.70) mm, and 1067.98 (± 73.36) mm, respectively. The average annual climatic characterization of the state of Maranhão was 53.4 (± 38.6) mm of the soil water storage, 698.71 (81.07) mm of the water surplus, and 395.85 (± 65.91) mm of the water deficit. Maranhão had seven climatic indexes. The most prevalent in the state was the Humid (B1, B2, B3, and B4), with 61% of the entire territory. RCP2.6 and RCP 8.5 are the driest. RCP6.0 and RCP8.5 show the most significant changes in the current situation. The humidity index’s reduction will harm various economic activities in Maranhão, such as agriculture, livestock, and fishing.

Suggested Citation

  • Lucas Eduardo Oliveira Aparecido & Kamila Cunha Meneses & Pedro Antonio Lorençone & João Antonio Lorençone & Jose Reinaldo da Silva Cabral de Moraes & Glauco Souza Rolim, 2023. "Climate classification by Thornthwaite (1948) humidity index in future scenarios for Maranhão State, Brazil," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(1), pages 855-878, January.
  • Handle: RePEc:spr:endesu:v:25:y:2023:i:1:d:10.1007_s10668-021-02082-9
    DOI: 10.1007/s10668-021-02082-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-02082-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-02082-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ahmadzadeh Araji, Hamidreza & Wayayok, Aimrun & Massah Bavani, Alireza & Amiri, Ebrahim & Abdullah, Ahmad Fikri & Daneshian, Jahanfar & Teh, C.B.S., 2018. "Impacts of climate change on soybean production under different treatments of field experiments considering the uncertainty of general circulation models," Agricultural Water Management, Elsevier, vol. 205(C), pages 63-71.
    2. Mauricio E. Arias & Fabio Farinosi & Eunjee Lee & Angela Livino & John Briscoe & Paul R. Moorcroft, 2020. "Impacts of climate change and deforestation on hydropower planning in the Brazilian Amazon," Nature Sustainability, Nature, vol. 3(6), pages 430-436, June.
    3. Mat Collins & Krishna AchutaRao & Karumuri Ashok & Satyendra Bhandari & Ashis K. Mitra & Satya Prakash & Rohit Srivastava & Andrew Turner, 2013. "Observational challenges in evaluating climate models," Nature Climate Change, Nature, vol. 3(11), pages 940-941, November.
    4. P. C. D. Milly & K. A. Dunne, 2016. "Potential evapotranspiration and continental drying," Nature Climate Change, Nature, vol. 6(10), pages 946-949, October.
    5. Thamo, Tas & Addai, Donkor & Pannell, David J. & Robertson, Michael J. & Thomas, Dean T. & Young, John M., 2017. "Climate change impacts and farm-level adaptation: Economic analysis of a mixed cropping–livestock system," Agricultural Systems, Elsevier, vol. 150(C), pages 99-108.
    6. Dingre, S.K. & Gorantiwar, S.D., 2020. "Determination of the water requirement and crop coefficient values of sugarcane by field water balance method in semiarid region," Agricultural Water Management, Elsevier, vol. 232(C).
    7. Milan Gocic & Slavisa Trajkovic, 2014. "Drought Characterisation Based on Water Surplus Variability Index," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(10), pages 3179-3191, August.
    8. Bernhard Schauberger & Sotirios Archontoulis & Almut Arneth & Juraj Balkovic & Philippe Ciais & Delphine Deryng & Joshua Elliott & Christian Folberth & Nikolay Khabarov & Christoph Müller & Thomas A. , 2017. "Consistent negative response of US crops to high temperatures in observations and crop models," Nature Communications, Nature, vol. 8(1), pages 1-9, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeetendra Prakash Aryal & Tek B. Sapkota & Ritika Khurana & Arun Khatri-Chhetri & Dil Bahadur Rahut & M. L. Jat, 2020. "Climate change and agriculture in South Asia: adaptation options in smallholder production systems," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(6), pages 5045-5075, August.
    2. Muhammad Waseem & Muhammad Ajmal & Joo Heon Lee & Tae-Woong Kim, 2016. "Multivariate Drought Assessment Considering the Antecedent Drought Conditions," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(12), pages 4221-4231, September.
    3. Thamo, Tas & Addai, Donkor & Kragt, Marit E. & Kingwell, Ross S. & Pannell, David J. & Robertson, Michael J., 2019. "Climate change reduces the mitigation obtainable from sequestration in an Australian farming system," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    4. Jean L. Steiner & David D. Briske & David P. Brown & Caitlin M. Rottler, 2018. "Vulnerability of Southern Plains agriculture to climate change," Climatic Change, Springer, vol. 146(1), pages 201-218, January.
    5. Donato Masciandaro & Riccardo Russo, 2022. "Central Banks and Climate Policy: Unpleasant Trade–Offs? A Principal–Agent Approach," BAFFI CAREFIN Working Papers 22181, BAFFI CAREFIN, Centre for Applied Research on International Markets Banking Finance and Regulation, Universita' Bocconi, Milano, Italy.
    6. Paff, K. & Timlin, D. & Fleisher, D.H., 2023. "A comparison of wheat leaf-appearance rate submodules for DSSAT CROPSIM-CERES (CSCER)," Ecological Modelling, Elsevier, vol. 482(C).
    7. Dimitrios P. Platis & Christos D. Anagnostopoulos & Aggeliki D. Tsaboula & Georgios C. Menexes & Kiriaki L. Kalburtji & Andreas P. Mamolos, 2019. "Energy Analysis, and Carbon and Water Footprint for Environmentally Friendly Farming Practices in Agroecosystems and Agroforestry," Sustainability, MDPI, vol. 11(6), pages 1-11, March.
    8. Shan Jiang & Jian Zhou & Guojie Wang & Qigen Lin & Ziyan Chen & Yanjun Wang & Buda Su, 2022. "Cropland Exposed to Drought Is Overestimated without Considering the CO 2 Effect in the Arid Climatic Region of China," Land, MDPI, vol. 11(6), pages 1-21, June.
    9. Kamini Yadav & Hatim M. E. Geli, 2021. "Prediction of Crop Yield for New Mexico Based on Climate and Remote Sensing Data for the 1920–2019 Period," Land, MDPI, vol. 10(12), pages 1-27, December.
    10. Jerome Dumortier & Miguel Carriquiry & Amani Elobeid, 2021. "Impact of climate change on global agricultural markets under different shared socioeconomic pathways," Agricultural Economics, International Association of Agricultural Economists, vol. 52(6), pages 963-984, November.
    11. Dingre, S.K. & Gorantiwar, S.D., 2021. "Soil moisture based deficit irrigation management for sugarcane (Saccharum officinarum L.) in semiarid environment," Agricultural Water Management, Elsevier, vol. 245(C).
    12. Yao Zhang & Pierre Gentine & Xiangzhong Luo & Xu Lian & Yanlan Liu & Sha Zhou & Anna M. Michalak & Wu Sun & Joshua B. Fisher & Shilong Piao & Trevor F. Keenan, 2022. "Increasing sensitivity of dryland vegetation greenness to precipitation due to rising atmospheric CO2," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    13. Amélie Rajaud & Nathalie de Noblet-Ducoudré, 2017. "Tropical semi-arid regions expanding over temperate latitudes under climate change," Climatic Change, Springer, vol. 144(4), pages 703-719, October.
    14. Gori Maia, Alexandre & Eusebio, Gabriela dos Santos & Fasiaben, Maria do Carmo Ramos & Moraes, Andre Steffens & Assad, Eduardo Delgado & Pugliero, Vanessa Silva, 2021. "The economic impacts of the diffusion of agroforestry in Brazil," Land Use Policy, Elsevier, vol. 108(C).
    15. Zhang, Qingsong & Sun, Jiahao & Zhang, Guangxin & Liu, Xuemei & Wu, Yanfeng & Sun, Jingxuan & Hu, Boting, 2023. "Spatiotemporal dynamics of water supply–demand patterns under large-scale paddy expansion: Implications for regional sustainable water resource management," Agricultural Water Management, Elsevier, vol. 285(C).
    16. Wu, Genan & Lu, Xinchen & Zhao, Wei & Cao, Ruochen & Xie, Wenqi & Wang, Liyun & Wang, Qiuhong & Song, Jiexuan & Gao, Shaobo & Li, Shenggong & Hu, Zhongmin, 2023. "The increasing contribution of greening to the terrestrial evapotranspiration in China," Ecological Modelling, Elsevier, vol. 477(C).
    17. Chandio, Abbas Ali & Ozdemir, Dicle & Jiang, Yuansheng, 2023. "Modelling the impact of climate change and advanced agricultural technologies on grain output: Recent evidence from China," Ecological Modelling, Elsevier, vol. 485(C).
    18. Pereira, L.S. & Paredes, P. & Hunsaker, D.J. & López-Urrea, R. & Mohammadi Shad, Z., 2021. "Standard single and basal crop coefficients for field crops. Updates and advances to the FAO56 crop water requirements method," Agricultural Water Management, Elsevier, vol. 243(C).
    19. Emile H. Elias & Robert Flynn & Omololu John Idowu & Julian Reyes & Soumaila Sanogo & Brian J. Schutte & Ryann Smith & Caitriana Steele & Carol Sutherland, 2019. "Crop Vulnerability to Weather and Climate Risk: Analysis of Interacting Systems and Adaptation Efficacy for Sustainable Crop Production," Sustainability, MDPI, vol. 11(23), pages 1-25, November.
    20. Guangsheng Pan & Qinran Hu & Wei Gu & Shixing Ding & Haifeng Qiu & Yuping Lu, 2021. "Assessment of plum rain’s impact on power system emissions in Yangtze-Huaihe River basin of China," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:25:y:2023:i:1:d:10.1007_s10668-021-02082-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.