IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i5d10.1007_s10668-021-01742-0.html
   My bibliography  Save this article

Fuzzy Hamacher WASPAS decision-making model for advantage prioritization of sustainable supply chain of electric ferry implementation in public transportation

Author

Listed:
  • Dragan Pamucar

    (University of Defence in Belgrade)

  • Muhammet Deveci

    (Turkish Naval Academy, National Defence University)

  • Ilgin Gokasar

    (Bogazici University)

  • Milena Popovic

    (Department of Operations Research and Statistics, Faculty of Organizational Sciences)

Abstract

Increasing the use of marine transportation has many benefits, ranging from the diversion of human traffic into different modes to the reduction in greenhouse gas (GHG) emissions because of reduced road traffic congestion. Since road traffic congestion has become a major issue for many cities, utilization of marine transportation is a point of interest for authorities. The supply chain of spare parts, batteries, etc., must also be carefully considered since the availability of materials is an important matter for such transitions. In this study, four alternatives, which are selected considering a sustainable transition to a more developed marine transportation system, are presented, namely optimizing the performance of ferry operations, converting current ferries into hybrid ferries, converting current ferries into electric ferries, and purchasing a new electric ferry fleet. Experts are consulted to receive their assessments of these alternatives according to various criteria, including sustainability measures and supply chain, defined under 4 main criteria topics, which are technical aspect, operational aspect, environmental aspect, and cost aspect. We aim to propose a novel weighted aggregated sum product assessment (WASPAS) approach based on the fuzzy Hamacher weighted averaging (FHWAA) function and weighted geometric averaging (FHWGA) function for advantage prioritization of the sustainable supply chain of the electric ferry. A case study is used to illustrate the formulation and solution of the problem. According to the expert views, it is seen that purchasing a new electric fleet is the most advantageous alternative. With a transition to more developed and sustainable marine transportation, this study provides the most advantageous alternative to authorities.

Suggested Citation

  • Dragan Pamucar & Muhammet Deveci & Ilgin Gokasar & Milena Popovic, 2022. "Fuzzy Hamacher WASPAS decision-making model for advantage prioritization of sustainable supply chain of electric ferry implementation in public transportation," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(5), pages 7138-7177, May.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:5:d:10.1007_s10668-021-01742-0
    DOI: 10.1007/s10668-021-01742-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01742-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01742-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jagdesh Kumar & Chethan Parthasarathy & Mikko Västi & Hannu Laaksonen & Miadreza Shafie-Khah & Kimmo Kauhaniemi, 2020. "Sizing and Allocation of Battery Energy Storage Systems in Åland Islands for Large-Scale Integration of Renewables and Electric Ferry Charging Stations," Energies, MDPI, vol. 13(2), pages 1-23, January.
    2. Bergmann, Ariel & Hanley, Nick & Wright, Robert, 2006. "Valuing the attributes of renewable energy investments," Energy Policy, Elsevier, vol. 34(9), pages 1004-1014, June.
    3. Korberg, A.D. & Brynolf, S. & Grahn, M. & Skov, I.R., 2021. "Techno-economic assessment of advanced fuels and propulsion systems in future fossil-free ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 142(C).
    4. Sadia Anwar & Muhammad Yousuf Irfan Zia & Muhammad Rashid & Gerardo Zarazua de Rubens & Peter Enevoldsen, 2020. "Towards Ferry Electrification in the Maritime Sector," Energies, MDPI, vol. 13(24), pages 1-22, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Walter, Kara A. & Thacher, Jennifer & Chermak, Janie M., 2023. "Examining willingness to pay for energy futures in a fossil and renewable energy-rich locale," Energy Policy, Elsevier, vol. 181(C).
    2. Michel Noussan & Edoardo Campisi & Matteo Jarre, 2022. "Carbon Intensity of Passenger Transport Modes: A Review of Emission Factors, Their Variability and the Main Drivers," Sustainability, MDPI, vol. 14(17), pages 1-16, August.
    3. Campbell, Robert M. & Venn, Tyron J. & Anderson, Nathaniel M., 2016. "Social preferences toward energy generation with woody biomass from public forests in Montana, USA," Forest Policy and Economics, Elsevier, vol. 73(C), pages 58-67.
    4. Kwak, So-Yoon & Yoo, Seung-Hoon, 2015. "The public’s value for developing ocean energy technology in the Republic of Korea: A contingent valuation study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 432-439.
    5. van Putten, Marloes & Lijesen, Mark & Özel, Tanju & Vink, Nancy & Wevers, Harm, 2014. "Valuing the preferences for micro-generation of renewables by househoulds," Energy, Elsevier, vol. 71(C), pages 596-604.
    6. Salehnia, Mina & Hayati, Baballah & Ghahremanzadeh, Mohammad & Molaei, Morteza, 2015. "Estimating the Value of Improvement in Lake Urmia’s Environmental Situation Using Choice Experiment," International Journal of Agricultural Management and Development (IJAMAD), Iranian Association of Agricultural Economics, vol. 5(4), December.
    7. Baharoon, Dhyia Aidroos & Rahman, Hasimah Abdul & Fadhl, Saeed Obaid, 2016. "Publics׳ knowledge, attitudes and behavioral toward the use of solar energy in Yemen power sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 498-515.
    8. Aldona Standar & Agnieszka Kozera & Łukasz Satoła, 2021. "The Importance of Local Investments Co-Financed by the European Union in the Field of Renewable Energy Sources in Rural Areas of Poland," Energies, MDPI, vol. 14(2), pages 1-23, January.
    9. Zorić, Jelena & Hrovatin, Nevenka, 2012. "Household willingness to pay for green electricity in Slovenia," Energy Policy, Elsevier, vol. 47(C), pages 180-187.
    10. Broberg, Thomas & Daniel, Aemiro Melkamu & Persson, Lars, 2021. "Household preferences for load restrictions: Is there an effect of pro-environmental framing?," Energy Economics, Elsevier, vol. 97(C).
    11. Motz, Alessandra, 2021. "Consumer acceptance of the energy transition in Switzerland: The role of attitudes explained through a hybrid discrete choice model," Energy Policy, Elsevier, vol. 151(C).
    12. García, Jorge H. & Cherry, Todd L. & Kallbekken, Steffen & Torvanger, Asbjørn, 2016. "Willingness to accept local wind energy development: Does the compensation mechanism matter?," Energy Policy, Elsevier, vol. 99(C), pages 165-173.
    13. Μichalena, Evanthie & Hills, Jeremy M., 2012. "Renewable energy issues and implementation of European energy policy: The missing generation?," Energy Policy, Elsevier, vol. 45(C), pages 201-216.
    14. Britwum, Kofi & Yiannaka, Amalia, 2019. "Consumer willingness to pay for food safety interventions: The role of message framing and issue involvement," Food Policy, Elsevier, vol. 86(C), pages 1-1.
    15. Christian A. Oberst & Reinhard Madlener, 2015. "Prosumer Preferences Regarding the Adoption of Micro†Generation Technologies: Empirical Evidence for German Homeowners," Working Papers 2015.07, International Network for Economic Research - INFER.
    16. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2024. "A solar-assisted liquefied biomethane production by anaerobic digestion: Dynamic simulations for harbors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    17. Rajesh K. Rai & Mani Nepal & Laxmi D. Bhatta & Saudamini Das & Madan S. Khadayat & E. Somanathan & Kedar Baral, 2019. "Ensuring Water Availability to Water Users through Incentive Payment for Ecosystem Services Scheme: A Case Study in a Small Hilly Town of Nepal," Water Economics and Policy (WEP), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-26, October.
    18. Savolainen, Rebecka & Lahdelma, Risto, 2022. "Optimization of renewable energy for buildings with energy storages and 15-minute power balance," Energy, Elsevier, vol. 243(C).
    19. Nobuyuki Ito & Kenji Takeuchi & Takahiro Tsuge & Atsuo Kishimoto, 2012. "The Motivation behind Behavioral Thresholds: A Latent Class Approach," Economics Bulletin, AccessEcon, vol. 32(3), pages 1831-1847.
    20. Benedek, József & Sebestyén, Tihamér-Tibor & Bartók, Blanka, 2018. "Evaluation of renewable energy sources in peripheral areas and renewable energy-based rural development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 516-535.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:5:d:10.1007_s10668-021-01742-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.