IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i4d10.1007_s10668-021-01670-z.html
   My bibliography  Save this article

The impact of urban spatial structure on air pollution: empirical evidence from China

Author

Listed:
  • Feng Wang

    (China University of Mining and Technology)

  • Mingru Dong

    (China University of Mining and Technology)

  • Jing Ren

    (China University of Mining and Technology)

  • Shan Luo

    (China University of Mining and Technology)

  • Hui Zhao

    (China University of Mining and Technology)

  • Juan Liu

    (China University of Mining and Technology)

Abstract

For a long time, air pollution caused by unreasonable urban spatial structure and excessive urban sprawl has been a prominent environmental problem in China. From the level of all cities, three economic zones and different city scales, panel data of 194 prefecture-level cities in China from 2006 to 2017 were used to construct a dynamic panel model and to analyze the impact of urban spatial structure on SO2, industrial smoke and dust emissions. The results showed that: (1) air pollution had a time cumulative effect year by year, the air pollution of the last year could add air pollution in the script year; (2) urban space expansion could effectively curb air pollution; (3) the urban spatial structure with high population compactness made the air pollution change in an inverted "U" shape; (4) in different economic zone levels and different urban scale levels, the direction of influence and intensity of urban spatial structure on air pollution was different. In the eastern region of China, the residential land, public facilities land and traffic land in the urban structure mainly affected the air pollution. In the central region, the residential land, industrial land, traffic land and municipal land in the urban structure had a significant impact on the air pollution, while the urban scale was the main cause of the air pollution in the western region. Based on this, we recommended the reasonable planning of land use structure, establishment of a population density regulation mechanism, and paying attention to regional differences and urban size differences. This study can help managers of different economic zones and cities of different sizes to improve urban spatial structure and control air pollution in the process of urban development.

Suggested Citation

  • Feng Wang & Mingru Dong & Jing Ren & Shan Luo & Hui Zhao & Juan Liu, 2022. "The impact of urban spatial structure on air pollution: empirical evidence from China," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5531-5550, April.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01670-z
    DOI: 10.1007/s10668-021-01670-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01670-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01670-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    2. Parisa Olad Ghaffari & Seyed Monavari, 2013. "Physical development trend and green space destruction in developing cities: a GIS approach," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 15(1), pages 167-175, February.
    3. Wang, Changjian & Miao, Zhuang & Chen, Xiaodong & Cheng, Yu, 2021. "Factors affecting changes of greenhouse gas emissions in Belt and Road countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 147(C).
    4. Meen Chel Jung & Jaewoo Park & Sunghwan Kim, 2019. "Spatial Relationships between Urban Structures and Air Pollution in Korea," Sustainability, MDPI, vol. 11(2), pages 1-17, January.
    5. Liu, Kai & Xue, Mingyue & Peng, Mengjie & Wang, Chengxin, 2020. "Impact of spatial structure of urban agglomeration on carbon emissions: An analysis of the Shandong Peninsula, China," Technological Forecasting and Social Change, Elsevier, vol. 161(C).
    6. Rebeca Fontanilla Andong & Edsel Sajor, 2017. "Urban sprawl, public transport, and increasing CO2 emissions: the case of Metro Manila, Philippines," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 19(1), pages 99-123, February.
    7. Davide Burgalassi & Tommaso Luzzati, 2015. "Urban spatial structure and environmental emissions: a survey of the literature and some empirical evidence for Italian NUTS-3 regions," Discussion Papers 2015/199, Dipartimento di Economia e Management (DEM), University of Pisa, Pisa, Italy.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Shao & Debao Dai & Yunqing Zhao & Liang Ye, 2024. "The Effect of Carbon Trading Pilot Policy on Resource Allocation Efficiency: A Multiple Mediating Effect Model of Development, Innovation, and Investment," Sustainability, MDPI, vol. 16(17), pages 1-22, August.
    2. Feilong Hao & Ming Lu & Tingting Yu & Shijun Wang, 2024. "Identification and characterization of urban polycentric structure based on points of interest in Shenyang, China," Growth and Change, Wiley Blackwell, vol. 55(1), March.
    3. Suiping Zeng & Jian Tian & Yuanzhen Song & Jian Zeng & Xiya Zhao, 2023. "Spatial Differentiation of PM 2.5 Concentration and Analysis of Atmospheric Health Patterns in the Xiamen-Zhangzhou-QuanZhou Urban Agglomeration," IJERPH, MDPI, vol. 20(4), pages 1-21, February.
    4. Rungruang Janta & Jenjira Kaewrat & Wittaya Tala & Surasak Sichum & Chuthamat Rattikansukha & K. H. Sameera M. Dharmadasa, 2023. "Human Health Risks and Interference of Urban Landscape and Meteorological Parameters in the Distribution of Pollutant: A Case Study of Nakhon Si Thammarat Province, Thailand," Sustainability, MDPI, vol. 15(20), pages 1-12, October.
    5. Kun Zhang & Yu Wang & Ali Mamtimin & Yongqiang Liu & Lifang Zhang & Jiacheng Gao & Ailiyaer Aihaiti & Cong Wen & Meiqi Song & Fan Yang & Chenglong Zhou & Wen Huo, 2024. "Simulation and Attribution Analysis of Spatial–Temporal Variation in Carbon Storage in the Northern Slope Economic Belt of Tianshan Mountains, China," Land, MDPI, vol. 13(5), pages 1-23, April.
    6. Chaonan Hu & Nana Luo & Chao Cai & Yarui Cui & Hongtao Gao & Xing Yan, 2024. "Meso-Scale Impacts of the Urban Structure Metrics on PM2.5 in China," Sustainability, MDPI, vol. 16(24), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Bin & Xin, Qingyao & Chen, Siyuan & Yang, Zhiying & Wang, Zhaohua, 2024. "Urban spatial structure and commuting-related carbon emissions in China: Do monocentric cities emit more?," Energy Policy, Elsevier, vol. 186(C).
    2. Carozzi, Felipe & Roth, Sefi, 2023. "Dirty density: Air quality and the density of American cities," Journal of Environmental Economics and Management, Elsevier, vol. 118(C).
    3. Castells-Quintana, David & Dienesch, Elisa & Krause, Melanie, 2021. "Air pollution in an urban world: A global view on density, cities and emissions," Ecological Economics, Elsevier, vol. 189(C).
    4. Xiaodong Chen & Anda Guo & Jiahao Zhu & Fang Wang & Yanqiu He, 2022. "Accessing performance of transport sector considering risks of climate change and traffic accidents: joint bounded-adjusted measure and Luenberger decomposition," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 111(1), pages 115-138, March.
    5. Xu Yang & Xuan Zou & Ming Li & Zeyu Wang, 2024. "The Decarbonization Effect of the Urban Polycentric Structure: Empirical Evidence from China," Land, MDPI, vol. 13(2), pages 1-17, February.
    6. Lohwasser, Johannes & Bolognesi, Thomas & Schaffer, Axel, 2025. "Impacts of population, affluence and urbanization on local air pollution and land transformation – A regional STIRPAT analysis for German districts," Ecological Economics, Elsevier, vol. 227(C).
    7. Liu Yang & Yuanqing Wang & Yujun Lian & Zhongming Guo & Yuanyuan Liu & Zhouhao Wu & Tieyue Zhang, 2022. "Key Factors, Planning Strategy and Policy for Low-Carbon Transport Development in Developing Cities of China," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    8. Denant-Boemont, Laurent & Gaigné, Carl & Gaté, Romain, 2018. "Urban spatial structure, transport-related emissions and welfare," Journal of Environmental Economics and Management, Elsevier, vol. 89(C), pages 29-45.
    9. Hasselwander, Marc & Bigotte, Joao F. & Antunes, Antonio P. & Sigua, Ricardo G., 2022. "Towards sustainable transport in developing countries: Preliminary findings on the demand for mobility-as-a-service (MaaS) in Metro Manila," Transportation Research Part A: Policy and Practice, Elsevier, vol. 155(C), pages 501-518.
    10. Chu, Junfei & Shao, Caifeng & Emrouznejad, Ali & Wu, Jie & Yuan, Zhe, 2021. "Performance evaluation of organizations considering economic incentives for emission reduction: A carbon emission permit trading approach," Energy Economics, Elsevier, vol. 101(C).
    11. Shumin Dong & Yuting Xue & Guixiu Ren & Kai Liu, 2022. "Urban Green Innovation Efficiency in China: Spatiotemporal Evolution and Influencing Factors," Land, MDPI, vol. 12(1), pages 1-13, December.
    12. Jin, Yushan & Xu, Yuanshuo, 2024. "Carbon reduction of urban form strategies: Regional heterogeneity in Yangtze River Delta, China," Land Use Policy, Elsevier, vol. 141(C).
    13. Pei-Pei Jiang & Yuan Wang & Jin Luo & Lin Zhu & Rui Shi & Song Hu & Xiaodong Zhu, 2023. "Measuring static and dynamic industrial eco-efficiency in China based on the MinDS–Malmquist–Luenberger model," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(6), pages 5241-5261, June.
    14. Haifeng Li & Wenbo Chen & Wei He, 2015. "Planning of Green Space Ecological Network in Urban Areas: An Example of Nanchang, China," IJERPH, MDPI, vol. 12(10), pages 1-16, October.
    15. Sun, Jianing & Zhou, Tao & Wang, Di, 2022. "Relationships between urban form and air quality: A reconsideration based on evidence from China’s five urban agglomerations during the COVID-19 pandemic," Land Use Policy, Elsevier, vol. 118(C).
    16. Jong In Baek & Yong Un Ban, 2020. "The Impacts of Urban Air Pollution Emission Density on Air Pollutant Concentration Based on a Panel Model," Sustainability, MDPI, vol. 12(20), pages 1-26, October.
    17. Peiyue Cheng & Guitao Zhang & Hao Sun, 2022. "The Sustainable Supply Chain Network Competition Based on Non-Cooperative Equilibrium under Carbon Emission Permits," Mathematics, MDPI, vol. 10(9), pages 1-31, April.
    18. Wan Li & Bindong Sun & Tinglin Zhang, 2019. "Spatial structure and labour productivity: Evidence from prefectures in China," Urban Studies, Urban Studies Journal Limited, vol. 56(8), pages 1516-1532, June.
    19. Wei Xiao & Wenhua Liu & Chunzhi Li, 2022. "Can the urban spatial structure accelerate urban employment growth? Evidence from China," Growth and Change, Wiley Blackwell, vol. 53(4), pages 1668-1693, December.
    20. Marchiori, Luca & Pascal, Julien & Pierrard, Olivier, 2023. "(In)efficient commuting and migration choices: Theory and policy in an urban search model," Regional Science and Urban Economics, Elsevier, vol. 102(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:4:d:10.1007_s10668-021-01670-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.