IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v24y2022i3d10.1007_s10668-021-01605-8.html
   My bibliography  Save this article

Estimation of shipping emissions based on real-time data with different methods: A case study of an oceangoing container ship

Author

Listed:
  • Araks Ekmekçioğlu

    (Yildiz Technical University)

  • Kaan Ünlügençoğlu

    (Yildiz Technical University)

  • Uğur Buğra Çelebi

    (Yildiz Technical University)

Abstract

The environmental consequences of ship-based greenhouse emissions have been increasingly significant as a result of the rise in the share of maritime transportation in international trade. Transnational organizations such as the European Union and the International Maritime Organization monitor these emissions and have come to limit some gas emissions such as SOx, NOx, PM, and CO2. These limiting measures are all needed and welcome. However, we need more accurate data to inform and implement even more concrete policies. This study contributes to such efforts by providing calculations of the emissions of NOx, NMVOC, PM, SOx, CO, and CO2 from an oceangoing container ship during its 37-day voyage in 2019. The use of a real case scenario differentiates this study from others. We employed two conventionally used methods to make the estimations. One is the fuel-based approach (top-down) and the other is the activity-based approach (bottom-up). While there is some discrepancy of results produced by the two methods, there is also consistency in terms of percentages regarding which gas is emitted most and when. The results indicate that by taking appropriate measures such as reducing fuel consumption, and using low-sulfur fuel, as well as optimizing port traffic, the environmental damage of maritime transportation could be reduced.

Suggested Citation

  • Araks Ekmekçioğlu & Kaan Ünlügençoğlu & Uğur Buğra Çelebi, 2022. "Estimation of shipping emissions based on real-time data with different methods: A case study of an oceangoing container ship," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(3), pages 4451-4470, March.
  • Handle: RePEc:spr:endesu:v:24:y:2022:i:3:d:10.1007_s10668-021-01605-8
    DOI: 10.1007/s10668-021-01605-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01605-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01605-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Simonsen, Morten & Gössling, Stefan & Walnum, Hans Jakob, 2019. "Cruise ship emissions in Norwegian waters: A geographical analysis," Journal of Transport Geography, Elsevier, vol. 78(C), pages 87-97.
    2. Song, Hongqing & Ou, Xunmin & Yuan, Jiehui & Yu, Mingxu & Wang, Cheng, 2017. "Energy consumption and greenhouse gas emissions of diesel/LNG heavy-duty vehicle fleets in China based on a bottom-up model analysis," Energy, Elsevier, vol. 140(P1), pages 966-978.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    2. Dong, Lijun & Kang, Xiaojun & Pan, Mengqi & Zhao, Man & Zhang, Feng & Yao, Hong, 2020. "B-matching-based optimization model for energy allocation in sea surface monitoring," Energy, Elsevier, vol. 192(C).
    3. Solaymani, Saeed, 2019. "CO2 emissions patterns in 7 top carbon emitter economies: The case of transport sector," Energy, Elsevier, vol. 168(C), pages 989-1001.
    4. Giovani T. T. Vieira & Derick Furquim Pereira & Seyed Iman Taheri & Khalid S. Khan & Mauricio B. C. Salles & Josep M. Guerrero & Bruno S. Carmo, 2022. "Optimized Configuration of Diesel Engine-Fuel Cell-Battery Hybrid Power Systems in a Platform Supply Vessel to Reduce CO 2 Emissions," Energies, MDPI, vol. 15(6), pages 1-34, March.
    5. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.
    6. Peng, Tianduo & Ou, Xunmin & Yuan, Zhiyi & Yan, Xiaoyu & Zhang, Xiliang, 2018. "Development and application of China provincial road transport energy demand and GHG emissions analysis model," Applied Energy, Elsevier, vol. 222(C), pages 313-328.
    7. Ren, Lei & Zhou, Sheng & Peng, Tianduo & Ou, Xunmin, 2022. "Greenhouse gas life cycle analysis of China's fuel cell medium- and heavy-duty trucks under segmented usage scenarios and vehicle types," Energy, Elsevier, vol. 249(C).
    8. Jiang, Jingjing & Ye, Bin & Liu, Junguo, 2019. "Peak of CO2 emissions in various sectors and provinces of China: Recent progress and avenues for further research," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 813-833.
    9. Chang, Yuan & Gao, Siqi & Ma, Qian & Wei, Ying & Li, Guoping, 2024. "Techno-economic analysis of carbon capture and utilization technologies and implications for China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Li, Yiliang & Bai, Xiwen & Wang, Qi & Ma, Zhongjun, 2022. "A big data approach to cargo type prediction and its implications for oil trade estimation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 165(C).
    11. Wang, Chen & Hu, Haowei & Zhang, Hao & Ji, Jie & Wang, Zhigang, 2022. "Experimental study of the horizontal subsurface flow trajectory and dynamic external radiation of flame spread over diesel," Energy, Elsevier, vol. 260(C).
    12. Jianping Zha & Rong Fan & Yao Yao & Lamei He & Yuanyuan Meng, 2021. "Framework for accounting for tourism carbon emissions in China: An industrial linkage perspective," Tourism Economics, , vol. 27(7), pages 1430-1460, November.
    13. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    14. Letnik, Tomislav & Farina, Alessandro & Mencinger, Matej & Lupi, Marino & Božičnik, Stane, 2018. "Dynamic management of loading bays for energy efficient urban freight deliveries," Energy, Elsevier, vol. 159(C), pages 916-928.
    15. Lin, Boqiang & Xu, Bin, 2018. "Growth of industrial CO2 emissions in Shanghai city: Evidence from a dynamic vector autoregression analysis," Energy, Elsevier, vol. 151(C), pages 167-177.
    16. Pedro G. Machado & Ana C. R. Teixeira & Flavia M. A. Collaço & Dominique Mouette, 2021. "Review of life cycle greenhouse gases, air pollutant emissions and costs of road medium and heavy‐duty trucks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 10(4), July.
    17. Qian Zhao & Wenke Huang & Mingwei Hu & Xiaoxiao Xu & Wenlin Wu, 2021. "Characterizing the Economic and Environmental Benefits of LNG Heavy-Duty Trucks: A Case Study in Shenzhen, China," Sustainability, MDPI, vol. 13(24), pages 1-18, December.
    18. Sun, Shouheng & Ertz, Myriam, 2022. "Life cycle assessment and risk assessment of liquefied natural gas vehicles promotion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    19. Verger, Thibault & Azimov, Ulugbek & Adeniyi, Oladapo, 2022. "Biomass-based fuel blends as an alternative for the future heavy-duty transport: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    20. Saleh Aseel & Hussein Al-Yafei & Murat Kucukvar & Nuri C. Onat, 2021. "Life Cycle Air Emissions and Social Human Health Impact Assessment of Liquified Natural Gas Maritime Transport," Energies, MDPI, vol. 14(19), pages 1-19, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:24:y:2022:i:3:d:10.1007_s10668-021-01605-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.