IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i9d10.1007_s10668-020-01213-y.html
   My bibliography  Save this article

Estimation of optimum supply of shared cars based on personal travel behaviors in condition of minimum energy consumption

Author

Listed:
  • Yanhong Yin

    (Ningbo University
    Province Collaborative Innovation Centre for Modern Urban Traffic Technologies)

  • Han Wang

    (Ningbo University)

  • Jimin Xiong

    (Ningbo University)

  • Yufeng Zhu

    (Ningbo University)

  • Zhanfeng Tang

    (Ningbo University)

Abstract

This study developed a method to determine the optimum supply of shared cars according to personal travel behaviors in the condition of minimum energy consumption. We applied the method in Southern Higher Education Zone (SHEZ) of Ningbo based on the survey data of personal travel behaviors in the region. Solutions in the case of minimum energy consumption encourage more shared-car trips, less private-car trips, and mass-transit trips. Total of 111 kJ of energy could be saved by each student from the actual case to minimum energy case. In SHEZ, 76 shared cars are recommended to provide an optimal supply of shared cars compared to 87 shared cars in reality. According to the findings, two policy implications are put forward from the aspects of supply and demand. First, to make an efficient supply, companies should focus on the distribution of shared cars according to the temporal and spatial distribution of usage, rather than only number of vehicles. Meanwhile, it is important to increase the usage of shared cars through policies, such as campaigns that raise residents’ awareness of car sharing as a green, flexible, and all-distance travel option for both workdays and holidays, and countermeasures that promote the usage of shared cars by key groups such as non-car owners. This study not only provides a method to estimate the optimum supply from viewpoint of minimum energy consumption, but also provide policy implications to guide the behaviors of both companies and users to improve the efficient usage of shared cars in Ningbo real case.

Suggested Citation

  • Yanhong Yin & Han Wang & Jimin Xiong & Yufeng Zhu & Zhanfeng Tang, 2021. "Estimation of optimum supply of shared cars based on personal travel behaviors in condition of minimum energy consumption," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(9), pages 13324-13339, September.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:9:d:10.1007_s10668-020-01213-y
    DOI: 10.1007/s10668-020-01213-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-01213-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-01213-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    2. George J. Stigler, 1950. "The Development of Utility Theory. II," Journal of Political Economy, University of Chicago Press, vol. 58(5), pages 373-373.
    3. Zhou, Fan & Zheng, Zuduo & Whitehead, Jake & Perrons, Robert K. & Washington, Simon & Page, Lionel, 2020. "Examining the impact of car-sharing on private vehicle ownership," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 322-341.
    4. Yin, Yanhong & Mizokami, Shoshi & Aikawa, Kohei, 2015. "Compact development and energy consumption: Scenario analysis of urban structures based on behavior simulation," Applied Energy, Elsevier, vol. 159(C), pages 449-457.
    5. Miao, Hongzhi & Jia, Hongfei & Li, Jiangchen & Qiu, Tony Z., 2019. "Autonomous connected electric vehicle (ACEV)-based car-sharing system modeling and optimal planning: A unified two-stage multi-objective optimization methodology," Energy, Elsevier, vol. 169(C), pages 797-818.
    6. Lai, Kexing & Chen, Tao & Natarajan, Balasubramaniam, 2020. "Optimal scheduling of electric vehicles car-sharing service with multi-temporal and multi-task operation," Energy, Elsevier, vol. 204(C).
    7. Brandstätter, Georg & Kahr, Michael & Leitner, Markus, 2017. "Determining optimal locations for charging stations of electric car-sharing systems under stochastic demand," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 17-35.
    8. Schmidt, Peter, 2020. "The effect of car sharing on car sales," International Journal of Industrial Organization, Elsevier, vol. 71(C).
    9. Firnkorn, Jörg & Müller, Martin, 2011. "What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm," Ecological Economics, Elsevier, vol. 70(8), pages 1519-1528, June.
    10. Martin, Elliot & Shaheen, Susan, 2011. "The Impact of Carsharing on Public Transit and Non-Motorized Travel: An Exploration of North American Carsharing Survey Data," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6xt6d5jv, Institute of Transportation Studies, UC Berkeley.
    11. Zhang, Dong & Liu, Yang & He, Shuangchi, 2019. "Vehicle assignment and relays for one-way electric car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 125-146.
    12. Hua, Yikang & Zhao, Dongfang & Wang, Xin & Li, Xiaopeng, 2019. "Joint infrastructure planning and fleet management for one-way electric car sharing under time-varying uncertain demand," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 185-206.
    13. Antonella Petrillo & Pasquale Carotenuto & Ilaria Baffo & Fabio De Felice, 2018. "A web-based multiple criteria decision support system for evaluation analysis of carpooling," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(5), pages 2321-2341, October.
    14. Gambella, Claudio & Malaguti, Enrico & Masini, Filippo & Vigo, Daniele, 2018. "Optimizing relocation operations in electric car-sharing," Omega, Elsevier, vol. 81(C), pages 234-245.
    15. Cai, Hua & Wang, Xi & Adriaens, Peter & Xu, Ming, 2019. "Environmental benefits of taxi ride sharing in Beijing," Energy, Elsevier, vol. 174(C), pages 503-508.
    16. Biao Yin & Liu Liu & Nicolas Coulombel & Vincent Viguie, 2018. "Appraising the environmental benefits of ride-sharing: The Paris region case study," Post-Print hal-01695082, HAL.
    17. Elliot Martin & Susan Shaheen, 2011. "The Impact of Carsharing on Public Transit and Non-Motorized Travel: An Exploration of North American Carsharing Survey Data," Energies, MDPI, vol. 4(11), pages 1-21, November.
    18. Mounce, Richard & Nelson, John D., 2019. "On the potential for one-way electric vehicle car-sharing in future mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 17-30.
    19. Ikezoe, Keigo & Kiriyama, Eriko & Fujimura, Shuzo, 2020. "Car-sharing intention analysis in Japan by comparing the utility of car ownership for car-owners and non-car owners," Transport Policy, Elsevier, vol. 96(C), pages 1-14.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alfred Benedikt Brendel & Sascha Lichtenberg & Stefan Morana & Christoph Prinz & Boris M. Hillmann, 2022. "Designing a Crowd-Based Relocation System—The Case of Car-Sharing," Sustainability, MDPI, vol. 14(12), pages 1-28, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bekli, Seyma & Boyacı, Burak & Zografos, Konstantinos G., 2021. "Enhancing the performance of one-way electric carsharing systems through the optimum deployment of fast chargers," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 118-139.
    2. Stokkink, Patrick & Geroliminis, Nikolas, 2021. "Predictive user-based relocation through incentives in one-way car-sharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 149(C), pages 230-249.
    3. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    4. Hu, Beibei & Sun, Yue & Li, Zixun & Zhang, Yanli & Sun, Huijun & Dong, Xianlei, 2024. "Competitive advantage of car-sharing based on travel costs comparison model: A case study of Beijing, China," Research in Transportation Economics, Elsevier, vol. 103(C).
    5. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    6. Huang, Kai & An, Kun & Rich, Jeppe & Ma, Wanjing, 2020. "Vehicle relocation in one-way station-based electric carsharing systems: A comparative study of operator-based and user-based methods," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    7. Tian, Jingjing & Jia, Hongfei & Wang, Guanfeng & Huang, Qiuyang & Wu, Ruiyi & Gao, Heyao & Liu, Chao, 2024. "Integrated optimization of charging infrastructure, fleet size and vehicle operation in shared autonomous electric vehicle system considering vehicle-to-grid," Renewable Energy, Elsevier, vol. 229(C).
    8. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    9. Lin, Dung-Ying & Kuo, Jia-Kai, 2021. "The vehicle deployment and relocation problem for electric vehicle sharing systems considering demand and parking space stochasticity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    10. Sun, Lishan & Wang, Shunchao & Liu, Shuli & Yao, Liya & Luo, Wei & Shukla, Ashish, 2018. "A completive research on the feasibility and adaptation of shared transportation in mega-cities – A case study in Beijing," Applied Energy, Elsevier, vol. 230(C), pages 1014-1033.
    11. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).
    12. Huang, Kai & An, Kun & Correia, Gonçalo Homem de Almeida, 2020. "Planning station capacity and fleet size of one-way electric carsharing systems with continuous state of charge functions," European Journal of Operational Research, Elsevier, vol. 287(3), pages 1075-1091.
    13. Jingjing Jia & Shujie Ma & Yixi Xue & Deyang Kong, 2020. "Life-Cycle Break-Even Analysis of Electric Carsharing: A Comparative Study in China," Sustainability, MDPI, vol. 12(16), pages 1-29, August.
    14. Yixi Xue & Yi Zhang & Yi Chen, 2019. "An Evaluation Framework for the Planning of Electric Car-Sharing Systems: A Combination Model of AHP-CBA-VD," Sustainability, MDPI, vol. 11(20), pages 1-22, October.
    15. Zihao Jiao & Lun Ran & Xin Liu & Yuli Zhang & Robin G. Qiu, 2020. "Integrating Price-Incentive and Trip-Selection Policies to Rebalance Shared Electric Vehicles," Service Science, INFORMS, vol. 12(4), pages 148-173, December.
    16. Boyacı, Burak & Zografos, Konstantinos G., 2019. "Investigating the effect of temporal and spatial flexibility on the performance of one-way electric carsharing systems," Transportation Research Part B: Methodological, Elsevier, vol. 129(C), pages 244-272.
    17. Yan, Pengyu & Yu, Kaize & Chao, Xiuli & Chen, Zhibin, 2023. "An online reinforcement learning approach to charging and order-dispatching optimization for an e-hailing electric vehicle fleet," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1218-1233.
    18. Qian Duan & Xin Ye & Jian Li & Ke Wang, 2020. "Empirical Modeling Analysis of Potential Commute Demand for Carsharing in Shanghai, China," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    19. Liu, Yang & Xie, Jiaohong & Chen, Nan, 2022. "Stochastic one-way carsharing systems with dynamic relocation incentives through preference learning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    20. Mariano Gallo & Mario Marinelli, 2020. "Sustainable Mobility: A Review of Possible Actions and Policies," Sustainability, MDPI, vol. 12(18), pages 1-39, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:9:d:10.1007_s10668-020-01213-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.