IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i5d10.1007_s10668-020-00930-8.html
   My bibliography  Save this article

Ethnobotanical knowledge of home garden plant species and its effect on home garden plant diversity in Thies region of Senegal

Author

Listed:
  • Hellen Naigaga

    (Uganda Martyrs University)

  • Joseph Ssekandi

    (Uganda Martyrs University)

  • Ablaye Ngom

    (Cheikh Anta DIOP University)

  • Godfrey Sseremba

    (Uganda Martyrs University)

  • Mame Samba Mbaye

    (Cheikh Anta DIOP University)

  • Kandioura Noba

    (Cheikh Anta DIOP University)

Abstract

Home gardens are the first source of immediate contact between people and plants since the gardens are within homesteads. Most home garden studies in Senegal concentrate on food security and economic benefits; no research has been carried out on the social and ecological contexts of home gardening in Senegal. It is therefore necessary to evaluate the way people interact with the home garden plants and how such an interface influences plant diversity. The objective of this study is to evaluate the ethnobotanical knowledge associated to home garden plants and its effect on plant diversity conservation in home gardens. A sample of 30 home gardens was selected from the three main departments of the region and was used to collect plant species data. Data were collected from informants who were selected basing on recommendations from village leaders. Techniques used were plant inventory, participatory observations and individual interviews. Species nomenclature was based on Senegal analytical flora and the world plant list; comparison of effect between different variables was analyzed in analytical software R using simple linear regression analysis. A total of 96 plant species were identified; all species were found to be useful plants divided into eight functional groups. Fifty-four percent (54%) were food species, 40% medicinal, 32% ornamental, 14% commercial, 7% fodder, 4% sacred, 4% ceremonial and 3% cosmetic. Citrus limon was the most frequent (80%) and preferred species in the home gardens. Food plant species are the most diversified, abundant and rich use category. There is a relationship between uses of species and species diversity (P value

Suggested Citation

  • Hellen Naigaga & Joseph Ssekandi & Ablaye Ngom & Godfrey Sseremba & Mame Samba Mbaye & Kandioura Noba, 2021. "Ethnobotanical knowledge of home garden plant species and its effect on home garden plant diversity in Thies region of Senegal," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(5), pages 7524-7536, May.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00930-8
    DOI: 10.1007/s10668-020-00930-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00930-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00930-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    2. Calvet-Mir, Laura & Gómez-Baggethun, Erik & Reyes-García, Victoria, 2012. "Beyond food production: Ecosystem services provided by home gardens. A case study in Vall Fosca, Catalan Pyrenees, Northeastern Spain," Ecological Economics, Elsevier, vol. 74(C), pages 153-160.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fábio T. F. Silva & Alexandre Szklo & Amanda Vinhoza & Ana Célia Nogueira & André F. P. Lucena & Antônio Marcos Mendonça & Camilla Marcolino & Felipe Nunes & Francielle M. Carvalho & Isabela Tagomori , 2022. "Inter-sectoral prioritization of climate technologies: insights from a Technology Needs Assessment for mitigation in Brazil," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 27(7), pages 1-39, October.
    2. Silvia Scaramuzzi & Sara Gabellini & Giovanni Belletti & Andrea Marescotti, 2021. "Agrobiodiversity-Oriented Food Systems between Public Policies and Private Action: A Socio-Ecological Model for Sustainable Territorial Development," Sustainability, MDPI, vol. 13(21), pages 1-32, November.
    3. Bourceret, Amélie & Accatino, Francesco & Robert, Corinne, 2024. "A modeling framework of a territorial socio-ecosystem to study the trajectories of change in agricultural phytosanitary practices," Ecological Modelling, Elsevier, vol. 494(C).
    4. Schmidt, Katja & Walz, Ariane & Martín-López, Berta & Sachse, René, 2017. "Testing socio-cultural valuation methods of ecosystem services to explain land use preferences," Ecosystem Services, Elsevier, vol. 26(PA), pages 270-288.
    5. Zewen Hei & Huimin Xiang & Jiaen Zhang & Kaiming Liang & Jiawen Zhong & Meijuan Li & Xiaoqiao Ren, 2021. "Intercropping of Rice and Water Mimosa ( Neptunia oleracea Lour.): A Novel Model to Control Pests and Diseases and Improve Yield and Grain Quality while Reducing N Fertilizer Application," Agriculture, MDPI, vol. 12(1), pages 1-17, December.
    6. Andrieu, N. & Blundo-Canto, G. & Cruz-Garcia, G.S., 2019. "Trade-offs between food security and forest exploitation by mestizo households in Ucayali, Peruvian Amazon," Agricultural Systems, Elsevier, vol. 173(C), pages 64-77.
    7. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    8. Maria Gialeli & Andreas Y. Troumbis & Constantinos Giaginis & Sousana K. Papadopoulou & Ioannis Antoniadis & Georgios K. Vasios, 2023. "The Global Growth of ‘Sustainable Diet’ during Recent Decades, a Bibliometric Analysis," Sustainability, MDPI, vol. 15(15), pages 1-23, August.
    9. Bliss, Sam & Egler, Megan, 2020. "Ecological Economics Beyond Markets," Ecological Economics, Elsevier, vol. 178(C).
    10. Heather E. Schier & Kathrin A. Eliot & Sterling A. Herron & Lauren K. Landfried & Zoë Migicovsky & Matthew J. Rubin & Allison J. Miller, 2019. "Comparative Analysis of Perennial and Annual Phaseolus Seed Nutrient Concentrations," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    11. Yunan Lin & Hao Wang & Yanqing Chen & Jiarui Tan & Jingpeng Hong & Shen Yan & Yongsheng Cao & Wei Fang, 2023. "Modelling Distributions of Asian and African Rice Based on MaxEnt," Sustainability, MDPI, vol. 15(3), pages 1-11, February.
    12. Jana Poláková, 2018. "Sustainability—Risk—Resilience: How Does the Case of the Good Agricultural and Environmental Conditions Measure up?," Sustainability, MDPI, vol. 10(5), pages 1-15, May.
    13. Joachim Binam & Frank Place & Antoine Kalinganire & Sigue Hamade & Moussa Boureima & Abasse Tougiani & Joseph Dakouo & Bayo Mounkoro & Sanogo Diaminatou & Marcel Badji & Mouhamadou Diop & Andre Babou , 2015. "Effects of farmer managed natural regeneration on livelihoods in semi-arid West Africa," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 17(4), pages 543-575, October.
    14. Jacques Fils Pierre & Luis Latournerie-Moreno & René Garruña-Hernández & Krista L. Jacobsen & Carrie A. M. Laboski & Lucila de Lourdes Salazar-Barrientos & Esaú Ruiz-Sánchez, 2021. "Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
    15. Giulia Conversa & Corrado Lazzizera & Anna Bonasia & Paolo La Rotonda & Antonio Elia, 2020. "Nutritional Characterization of Two Rare Landraces of Turnip ( Brassica rapa . var. rapa ) Tops and Their On-Farm Conservation in Foggia Province," Sustainability, MDPI, vol. 12(9), pages 1-14, May.
    16. Béné, Christophe & Oosterveer, Peter & Lamotte, Lea & Brouwer, Inge D. & de Haan, Stef & Prager, Steve D. & Talsma, Elise F. & Khoury, Colin K., 2019. "When food systems meet sustainability – Current narratives and implications for actions," World Development, Elsevier, vol. 113(C), pages 116-130.
    17. Huet, E.K. & Adam, M. & Giller, K.E. & Descheemaeker, K., 2020. "Diversity in perception and management of farming risks in southern Mali," Agricultural Systems, Elsevier, vol. 184(C).
    18. Palomo-Campesino, Sara & García-Llorente, Marina & Hevia, Violeta & Boeraeve, Fanny & Dendoncker, Nicolas & González, José A., 2022. "Do agroecological practices enhance the supply of ecosystem services? A comparison between agroecological and conventional horticultural farms," Ecosystem Services, Elsevier, vol. 57(C).
    19. Tibesigwa, Byela & Ntuli, Herbert & Muta, Telvin, 2022. "We can incorporate agriculture ecosystems into urban green economy in Tanzania: Dar es Salaam households are willing to pay," EfD Discussion Paper 22-19, Environment for Development, University of Gothenburg.
    20. Paola A. Deligios & Gianluca Carboni & Roberta Farci & Stefania Solinas & Luigi Ledda, 2019. "The Influence of Herbicide Underdosage on the Composition and Diversity of Weeds in Oilseed Rape ( Brassica napus L. var. oleifera D.C.) Mediterranean Fields," Sustainability, MDPI, vol. 11(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:5:d:10.1007_s10668-020-00930-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.