IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i20p11503-d658938.html
   My bibliography  Save this article

Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula

Author

Listed:
  • Jacques Fils Pierre

    (Division of Postgraduate Studies and Research, Tecnológico Nacional de México, Campus Conkal, Conkal 973453, Mexico)

  • Luis Latournerie-Moreno

    (Division of Postgraduate Studies and Research, Tecnológico Nacional de México, Campus Conkal, Conkal 973453, Mexico)

  • René Garruña-Hernández

    (National Council of Science and Technology, Tecnológico Nacional de México, Campus Conkal, Conkal 973453, Mexico)

  • Krista L. Jacobsen

    (Department of Horticulture, University of Kentucky, Lexington, KY 40546, USA)

  • Carrie A. M. Laboski

    (Department of Soil Science, University of Wisconsin-Madison, Madison, WI 53706, USA)

  • Lucila de Lourdes Salazar-Barrientos

    (Division of Postgraduate Studies and Research, Tecnológico Nacional de México, Campus Conkal, Conkal 973453, Mexico)

  • Esaú Ruiz-Sánchez

    (Division of Postgraduate Studies and Research, Tecnológico Nacional de México, Campus Conkal, Conkal 973453, Mexico)

Abstract

Intercropping constitutes the traditional farming system practice used in various forms for maize production in the Yucatan peninsula. Although practiced for centuries, problems persist with competition for water, nutrients and light between crop species in traditional farming systems. Furthermore, little is known about farmers’ perceptions regarding changes to traditional maize-legume intercropping systems and their interest in novel crop adoption to increase yields in the system while maintaining the practice. The objective of this study was to investigate the maize-based traditional cropping system by assessing the underlying motives and concepts of farmers to practice intercropping in the Yucatan Peninsula and to examine the association between farmers’ level of knowledge about legumes and decisions to adopt intercropping and related practices therein. Farmer surveys were conducted in nine different regions of the Yucatan Peninsula. We selected Xoy, Euan, Muna, Mama, Tahdziú (Yucatan), Becal, Hecelchacam, Dzitbalché and San Antonio Sahcabchén (Campeche) which are representative of agroecological small-scale farming systems. We used a mixed methods case study analysis involving key informant interviews in eight associations of farmers. A sample frame with 73 farmers was selected in total during February 2021 and April 2021. Basic information such as land use, labor inputs, agricultural production and farmer’s perceptions regarding their intercropping systems were collected. Our research shows that the primary motives for intercropping were due to the ability of intercropping to offer a more diversified range of food for human and animal consumption, as well as to take advantage of different harvest periods that this practice offers. The majority of respondents were likely to favor the idea of introducing new legume species in their maize-based cropping systems. Factors such as the type of cropping system (i.e., intercropping or monocropping), access to water and level of knowledge about legumes influenced their decision to adopt intercropping in their farming systems considerably. This paper contributes to the knowledge on the current state and farmers’ perceptions of intercropping systems in the Yucatan Peninsula.

Suggested Citation

  • Jacques Fils Pierre & Luis Latournerie-Moreno & René Garruña-Hernández & Krista L. Jacobsen & Carrie A. M. Laboski & Lucila de Lourdes Salazar-Barrientos & Esaú Ruiz-Sánchez, 2021. "Farmer Perceptions of Adopting Novel Legumes in Traditional Maize-Based Farming Systems in the Yucatan Peninsula," Sustainability, MDPI, vol. 13(20), pages 1-16, October.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11503-:d:658938
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/20/11503/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/20/11503/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Timothy R. Silberg & Robert B. Richardson & Maria Claudia Lopez, 2020. "Maize farmer preferences for intercropping systems to reduce Striga in Malawi," Food Security: The Science, Sociology and Economics of Food Production and Access to Food, Springer;The International Society for Plant Pathology, vol. 12(2), pages 269-283, April.
    2. Emile A. Frison & Jeremy Cherfas & Toby Hodgkin, 2011. "Agricultural Biodiversity Is Essential for a Sustainable Improvement in Food and Nutrition Security," Sustainability, MDPI, vol. 3(1), pages 1-16, January.
    3. D'Emden, Francis H. & Llewellyn, Rick S. & Burton, Michael P., 2008. "Factors influencing adoption of conservation tillage in Australian cropping regions," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(2), pages 1-14.
    4. Francis H. D'Emden & Rick S. Llewellyn & Michael P. Burton, 2008. "Factors influencing adoption of conservation tillage in Australian cropping regions ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 52(2), pages 169-182, June.
    5. Kassie, Menale & Jaleta, Moti & Shiferaw, Bekele & Mmbando, Frank & Mekuria, Mulugetta, 2013. "Adoption of interrelated sustainable agricultural practices in smallholder systems: Evidence from rural Tanzania," Technological Forecasting and Social Change, Elsevier, vol. 80(3), pages 525-540.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniele Mozzato & Paola Gatto & Edi Defrancesco & Lucia Bortolini & Francesco Pirotti & Elena Pisani & Luigi Sartori, 2018. "The Role of Factors Affecting the Adoption of Environmentally Friendly Farming Practices: Can Geographical Context and Time Explain the Differences Emerging from Literature?," Sustainability, MDPI, vol. 10(9), pages 1-23, August.
    2. Schipmann, Christin & Qaim, Matin, 2009. "Modern Supply Chains and Product Innovation: How Can Smallholder Farmers Benefit?," 2009 Conference, August 16-22, 2009, Beijing, China 51046, International Association of Agricultural Economists.
    3. Micheels, Eric T. & Nolan, James F., 2016. "Examining the effects of absorptive capacity and social capital on the adoption of agricultural innovations: A Canadian Prairie case study," Agricultural Systems, Elsevier, vol. 145(C), pages 127-138.
    4. Nordblom, Thomas L. & Penfold, Chris & Weckert, Melanie & Norton, Mark R., 2017. "Straw and living mulches compared with herbicide for under-vine weed control in a Public-Private Benefit Framework," 2017 Conference (61st), February 7-10, 2017, Brisbane, Australia 258677, Australian Agricultural and Resource Economics Society.
    5. Wade, Tara & Claassen, Roger, 2015. "Modeling No-Tillage Adoption by Corn and Soybean Producers: Insights into Sustained Adoption," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 204957, Agricultural and Applied Economics Association.
    6. Katherine Dentzman & Ian Cristofer Burke, 2021. "Herbicide Resistance, Tillage, and Community Management in the Pacific Northwest," Sustainability, MDPI, vol. 13(4), pages 1-18, February.
    7. Xin Yang & Yiming Sang, 2020. "How Does Part-Time Farming Affect Farmers’ Adoption of Conservation Agriculture in Jianghan Plain, China?," IJERPH, MDPI, vol. 17(16), pages 1-12, August.
    8. Tingting Liu & Randall J. F. Bruins & Matthew T. Heberling, 2018. "Factors Influencing Farmers’ Adoption of Best Management Practices: A Review and Synthesis," Sustainability, MDPI, vol. 10(2), pages 1-26, February.
    9. Yigezu, Yigezu Atnafe & Mugera, Amin & El-Shater, Tamer & Aw-Hassan, Aden & Piggin, Colin & Haddad, Atef & Khalil, Yaseen & Loss, Stephen, 2018. "Enhancing adoption of agricultural technologies requiring high initial investment among smallholders," Technological Forecasting and Social Change, Elsevier, vol. 134(C), pages 199-206.
    10. Rafia Afroz, 2017. "An Alternative Model for Supporting the Rice Farmers in Adaptation of Climate Change," International Journal of Economics and Financial Issues, Econjournals, vol. 7(5), pages 317-330.
    11. Massfeller, Anna & Meraner, Manuela & Hüttel, Silke & Uehleke, Reinhard, 2022. "Farmers' acceptance of results-based agri-environmental schemes: A German perspective," Land Use Policy, Elsevier, vol. 120(C).
    12. Kotu, Bekele Hundie & Oyinbo, Oyakhilomen & Hoeschle-Zeledon, Irmgard & Nurudeen, Abdul Rahman & Kizito, Fred & Boyubie, Benedict, 2022. "Smallholder farmers’ preferences for sustainable intensification attributes in maize production: Evidence from Ghana," World Development, Elsevier, vol. 152(C).
    13. Wang, Zhenhua & Liu, Qiaochu & Yang, Jian & Jiang, Jinqi, 2021. "Can Technology Demonstration Promote Rural Households’ Adoption of Conservation Tillage in the Main Grain-Producing Areas of China?," 2021 Conference, August 17-31, 2021, Virtual 315171, International Association of Agricultural Economists.
    14. Njabulo Lloyd Ntshangase & Brian Muroyiwa & Melusi Sibanda, 2018. "Farmers’ Perceptions and Factors Influencing the Adoption of No-Till Conservation Agriculture by Small-Scale Farmers in Zashuke, KwaZulu-Natal Province," Sustainability, MDPI, vol. 10(2), pages 1-16, February.
    15. Lulu He & Qingwen Min & Chuanchun Hong & Yongxun Zhang, 2021. "Features and Socio-Economic Sustainability of Traditional Chestnut Forestry Landscape in China: A Case of Kuancheng County, Hebei Province," Land, MDPI, vol. 10(9), pages 1-18, September.
    16. Valborg Kvakkestad & Åsmund Lægreid Steiro & Arild Vatn, 2021. "Pesticide Policies and Farm Behavior: The Introduction of Regulations for Integrated Pest Management," Agriculture, MDPI, vol. 11(9), pages 1-17, August.
    17. Kolikow, Steven & Kragt, Marit Ellen & Mugera, Amin W., 2012. "An interdisciplinary framework of limits and barriers to climate change adaptation in agriculture," Working Papers 120467, University of Western Australia, School of Agricultural and Resource Economics.
    18. Marita Laukkanen & NAUGES Céline, 2009. "Environmental and production cost impacts of no-till: estimates from observed behavior," LERNA Working Papers 09.28.304, LERNA, University of Toulouse.
    19. Schimmelpfennig, David & Ebel, Robert, 2016. "Sequential Adoption and Cost Savings from Precision Agriculture," Journal of Agricultural and Resource Economics, Western Agricultural Economics Association, vol. 41(1), pages 1-19, January.
    20. Thomas, Dean T. & Moore, Andrew D. & Bell, Lindsay W. & Webb, Nicholas P., 2018. "Ground cover, erosion risk and production implications of targeted management practices in Australian mixed farming systems: Lessons from the Grain and Graze program," Agricultural Systems, Elsevier, vol. 162(C), pages 123-135.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:20:p:11503-:d:658938. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.