IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i3d10.1007_s10668-020-00782-2.html
   My bibliography  Save this article

Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India

Author

Listed:
  • Rajendra B. Zolekar

    (K.V.N. Naik Shikshan Prasarak Sanstha’s Arts, Commerce and Science College Nashik)

  • Rahul S. Todmal

    (Vidya Pratishthan’s Arts, Science and Commerce College)

  • Vijay S. Bhagat

    (Agasti Arts, Commerce and Science College Akole)

  • Santosh A. Bhailume

    (K.V.N. Naik Shikshan Prasarak Sanstha’s Arts, Commerce and Science College Nashik)

  • Mahendra S. Korade

    (Shri Shiv Chhatrapati College, Junnar)

  • Sumit Das

    (Savitribai Phule Pune University)

Abstract

Groundwater qualities in Nashik District of Maharashtra were analyzed using hydro-geochemical characterization and geospatial techniques for sixty-one (n = 61) representative samples. GIS-based WQI was computed for planning and monitoring the groundwater qualities in the study region. Piper trilinear and Gibbs diagram were plotted to determine the variation in hydro-geochemical facies and to understand the functional sources of chemical constituents. The analytical results cleared that the nature of the groundwater is highly alkaline. Majority of the samples were within the desirable and maximum permissible limits as decided by Bureau of Indian Standards for each parameter. Piper diagram shows about 39.34% samples belong to Ca2+–Mg2+–Cl−– $${\text{SO}}_{4}^{2 - }$$ SO 4 2 - type, signifying permanent hardness and 57.37% samples belong to Ca2+–Mg2+– $${\text{HCO}}_{3}^{ - }$$ HCO 3 - type suggesting temporary hardness. Only 3.25% samples fall under Na+–K+–Cl−– $${\text{SO}}_{4}^{2 - }$$ SO 4 2 - type. Alkaline earth exceeds alkalis in 96.72% samples of the groundwater. The WQI suggests that 59% sites have excellent and good quality water; and about 41% sites characterized by poor quality water, which are unsuitable for drinking purposes. WQI values for TDS, TH, Ca2+, Na+, Mg2+, Cl−, K+, $${\text{NO}}_{3}^{ - }$$ NO 3 - and $${\text{SO}}_{4}^{2 - }$$ SO 4 2 - are more than the permissible limits. Hierarchical cluster analysis corroborates the spatial analysis results of WQI and proved statistically. The present investigation indicates significant dominance of agriculture and rock weathering that influence the groundwater chemistry in Nashik district.

Suggested Citation

  • Rajendra B. Zolekar & Rahul S. Todmal & Vijay S. Bhagat & Santosh A. Bhailume & Mahendra S. Korade & Sumit Das, 2021. "Hydro-chemical characterization and geospatial analysis of groundwater for drinking and agricultural usage in Nashik district in Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4433-4452, March.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00782-2
    DOI: 10.1007/s10668-020-00782-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-020-00782-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-020-00782-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keshav K. Deshmukh & Sainath P. Aher, 2016. "Assessment of the Impact of Municipal Solid Waste on Groundwater Quality near the Sangamner City using GIS Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(7), pages 2425-2443, May.
    2. Insaf Babiker & Mohamed Mohamed & Tetsuya Hiyama, 2007. "Assessing groundwater quality using GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 699-715, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Soumaya Hajji & Nabila Allouche & Salem Bouri & Awad M. Aljuaid & Wafik Hachicha, 2021. "Assessment of Seawater Intrusion in Coastal Aquifers Using Multivariate Statistical Analyses and Hydrochemical Facies Evolution-Based Model," IJERPH, MDPI, vol. 19(1), pages 1-18, December.
    2. Puja Chowdhury & Bhabani Prasad Mukhopadhyay & Siperna Nayak & Amit Bera, 2022. "Hydro-chemical characterization of groundwater and evaluation of health risk assessment for fluoride contamination areas in the eastern blocks of Purulia district, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(9), pages 11320-11347, September.
    3. Yongxiang Zhang & Ruitao Jia & Jin Wu & Huaqing Wang & Zhuoran Luo, 2021. "Evaluation of Groundwater Using an Integrated Approach of Entropy Weight and Stochastic Simulation: A Case Study in East Region of Beijing," IJERPH, MDPI, vol. 18(14), pages 1-18, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Augustina Clara Alexander & Julius Ndambuki & Ramadhan Salim & Alex Manda, 2017. "Assessment of Spatial Variation of Groundwater Quality in a Mining Basin," Sustainability, MDPI, vol. 9(5), pages 1-14, May.
    2. B. Yan & X. Su & Y. Chen, 2009. "Functional Structure and Data Management of Urban Water Supply Network Based on GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2633-2653, October.
    3. Giovanni De Filippis & Prisco Piscitelli & Idelberto Francesco Castorini & Anna Maria Raho & Adele Idolo & Nicola Ungaro & Filomena Lacarbonara & Erminia Sgaramella & Vito Laghezza & Donatella Chionna, 2020. "Water Quality Assessment: A Quali-Quantitative Method for Evaluation of Environmental Pressures Potentially Impacting on Groundwater, Developed under the M.I.N.O.Re. Project," IJERPH, MDPI, vol. 17(6), pages 1-14, March.
    4. Lazhar Belkhiri & Tahoora Narany, 2015. "Using Multivariate Statistical Analysis, Geostatistical Techniques and Structural Equation Modeling to Identify Spatial Variability of Groundwater Quality," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(6), pages 2073-2089, April.
    5. Abdessamed Derdour & Hazem Ghassan Abdo & Hussein Almohamad & Abdullah Alodah & Ahmed Abdullah Al Dughairi & Sherif S. M. Ghoneim & Enas Ali, 2023. "Prediction of Groundwater Quality Index Using Classification Techniques in Arid Environments," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    6. A. El-Hames & A. Hannachi & M. Al-Ahmadi & N. Al-Amri, 2013. "Groundwater Quality Zonation Assessment using GIS, EOFs and Hierarchical Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2465-2481, May.
    7. Dattatray Khamkar & Sainath Aher & Praveen Gawali & Sumedh Mhaske, 2022. "Investigating probable causes for predicting catastrophic landslides along NH-60 excavated through semi-arid basaltic terrain of Chandanapuri Ghat, Maharashtra, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(2), pages 2362-2386, February.
    8. M. El-Fadel & M. Tomaszkiewicz & Y. Adra & S. Sadek & M. Abou Najm, 2014. "GIS-Based Assessment for the Development of a Groundwater Quality Index Towards Sustainable Aquifer Management," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3471-3487, September.
    9. Saret Bun & Sreymao Sek & Chantha Oeurng & Manabu Fujii & Phaly Ham & Pisut Painmanakul, 2021. "A Survey of Household Water Use and Groundwater Quality Index Assessment in a Rural Community of Cambodia," Sustainability, MDPI, vol. 13(18), pages 1-24, September.
    10. M. Annie Jenifer & Madan Kumar Jha, 2022. "A Novel GIS-Based Modeling Approach for Evaluating Aquifer Susceptibility to Anthropogenic Contamination," Sustainability, MDPI, vol. 14(8), pages 1-20, April.
    11. Vittorio Catani & Daniela Zuzolo & Libera Esposito & Stefano Albanese & Mauro Pagnozzi & Francesco Fiorillo & Benedetto Vivo & Domenico Cicchella, 2020. "A New Approach for Aquifer Vulnerability Assessment: the Case Study of Campania Plain," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(2), pages 819-834, January.
    12. M. Annie Jenifer & Madan Kumar Jha & Amina Khatun, 2021. "Assessing Multi-Criteria Decision Analysis Models for Predicting Groundwater Quality in a River Basin of South India," Sustainability, MDPI, vol. 13(12), pages 1-29, June.
    13. Chander Singh & Satyanarayan Shashtri & Saumitra Mukherjee & Rina Kumari & Ram Avatar & Amit Singh & Ravi Singh, 2011. "Application of GWQI to Assess Effect of Land Use Change on Groundwater Quality in Lower Shiwaliks of Punjab: Remote Sensing and GIS Based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1881-1898, May.
    14. Meenu Rani & Himanshu Joshi & Kireet Kumar & Darshan Kumar Bhatt & Pavan Kumar, 2021. "Climate change scenario of hydro-chemical analysis and mapping spatio-temporal changes in water chemistry of water springs in Kumaun Himalaya," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(3), pages 4659-4674, March.
    15. P. J. Sajil Kumar, 2022. "GIS-based mapping of water-level fluctuations (WLF) and its impact on groundwater in an Agrarian District in Tamil Nadu, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(1), pages 994-1009, January.
    16. Chandrashekhar Bhuiyan & Prashant Kumar Champati Ray, 2017. "Groundwater Quality Zoning in the Perspective of Health Hazards," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 31(1), pages 251-267, January.
    17. Mohamed Alfy & Aref Lashin & Nassir Al-Arifi & Abdulaziz Al-Bassam, 2015. "Groundwater Characteristics and Pollution Assessment Using Integrated Hydrochemical Investigations GIS and Multivariate Geostatistical Techniques in Arid Areas," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 29(15), pages 5593-5612, December.
    18. M. Salahat & M. Al-Qinna & K. Mashal & N. Hammouri, 2014. "Identifying Major Factors Controlling Groundwater Quality in Semiarid Area Using Advanced Statistical Techniques," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(11), pages 3829-3841, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:3:d:10.1007_s10668-020-00782-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.