IDEAS home Printed from https://ideas.repec.org/a/spr/waterr/v27y2013i7p2465-2481.html
   My bibliography  Save this article

Groundwater Quality Zonation Assessment using GIS, EOFs and Hierarchical Clustering

Author

Listed:
  • A. El-Hames
  • A. Hannachi
  • M. Al-Ahmadi
  • N. Al-Amri

Abstract

Three methods are utilized in this paper to assist in the groundwater clustering, in an arid region aquifer, into similar zones according to its quality. A multiple regression is first applied in order to assess the importance of the different chemical constituents in the amount of total dissolved salt, which shows the dominance of chlorine and sodium. A multivariate analysis based on empirical orthogonal functions and hierarchical clustering (EOFs) is applied to assist in water quality clustering in the studied aquifer. The clustering has produced five distinguished categories of groundwater quality, which agree well with World Health Organisation criteria and limits for water usage. Based on these categories, spatial distribution maps of groundwater quality are produced by Kriging and GIS software. Copyright Springer Science+Business Media Dordrecht 2013

Suggested Citation

  • A. El-Hames & A. Hannachi & M. Al-Ahmadi & N. Al-Amri, 2013. "Groundwater Quality Zonation Assessment using GIS, EOFs and Hierarchical Clustering," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 27(7), pages 2465-2481, May.
  • Handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2465-2481
    DOI: 10.1007/s11269-013-0297-0
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11269-013-0297-0
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11269-013-0297-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Insaf Babiker & Mohamed Mohamed & Tetsuya Hiyama, 2007. "Assessing groundwater quality using GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 21(4), pages 699-715, April.
    2. Chander Singh & Satyanarayan Shashtri & Saumitra Mukherjee & Rina Kumari & Ram Avatar & Amit Singh & Ravi Singh, 2011. "Application of GWQI to Assess Effect of Land Use Change on Groundwater Quality in Lower Shiwaliks of Punjab: Remote Sensing and GIS Based Approach," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(7), pages 1881-1898, May.
    3. Li, Baibing & Martin, Elaine B. & Morris, A. Julian, 2002. "On principal component analysis in L1," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 471-474, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nguyen Hong Duc & Pankaj Kumar & Pham Phuong Lan & Tonni Agustiono Kurniawan & Khaled Mohamed Khedher & Ali Kharrazi & Osamu Saito & Ram Avtar, 2023. "Hydrochemical indices as a proxy for assessing land-use impacts on water resources: a sustainable management perspective and case study of Can Tho City, Vietnam," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2573-2615, July.
    2. Plat, Richard, 2009. "Stochastic portfolio specific mortality and the quantification of mortality basis risk," Insurance: Mathematics and Economics, Elsevier, vol. 45(1), pages 123-132, August.
    3. Kondylis, Athanassios & Whittaker, Joe, 2008. "Spectral preconditioning of Krylov spaces: Combining PLS and PC regression," Computational Statistics & Data Analysis, Elsevier, vol. 52(5), pages 2588-2603, January.
    4. Ouyang, Yaofu & Li, Peng, 2018. "On the nexus of financial development, economic growth, and energy consumption in China: New perspective from a GMM panel VAR approach," Energy Economics, Elsevier, vol. 71(C), pages 238-252.
    5. Paschalis Arvanitidis & Athina Economou & Christos Kollias, 2016. "Terrorism’s effects on social capital in European countries," Public Choice, Springer, vol. 169(3), pages 231-250, December.
    6. Rizvi, Syed Kumail Abbas & Rahat, Birjees & Naqvi, Bushra & Umar, Muhammad, 2024. "Revolutionizing finance: The synergy of fintech, digital adoption, and innovation," Technological Forecasting and Social Change, Elsevier, vol. 200(C).
    7. Teerachai Amnuaylojaroen & Pavinee Chanvichit, 2024. "Historical Analysis of the Effects of Drought on Rice and Maize Yields in Southeast Asia," Resources, MDPI, vol. 13(3), pages 1-18, March.
    8. Weili Duan & Bin He & Daniel Nover & Guishan Yang & Wen Chen & Huifang Meng & Shan Zou & Chuanming Liu, 2016. "Water Quality Assessment and Pollution Source Identification of the Eastern Poyang Lake Basin Using Multivariate Statistical Methods," Sustainability, MDPI, vol. 8(2), pages 1-15, January.
    9. Adele Ravagnani & Fabrizio Lillo & Paola Deriu & Piero Mazzarisi & Francesca Medda & Antonio Russo, 2024. "Dimensionality reduction techniques to support insider trading detection," Papers 2403.00707, arXiv.org, revised May 2024.
    10. Cling, Jean-Pierre & Delecourt, Clément, 2022. "Interlinkages between the Sustainable Development Goals," World Development Perspectives, Elsevier, vol. 25(C).
    11. Hino, Hideitsu & Wakayama, Keigo & Murata, Noboru, 2013. "Entropy-based sliced inverse regression," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 105-114.
    12. Angelucci, Federica & Conforti, Piero, 2010. "Risk management and finance along value chains of Small Island Developing States. Evidence from the Caribbean and the Pacific," Food Policy, Elsevier, vol. 35(6), pages 565-575, December.
    13. Poskitt, D.S. & Sengarapillai, Arivalzahan, 2013. "Description length and dimensionality reduction in functional data analysis," Computational Statistics & Data Analysis, Elsevier, vol. 58(C), pages 98-113.
    14. Taner Akan & Tim Solle, 2022. "Do macroeconomic and financial governance matter? Evidence from Germany, 1950–2019," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 17(4), pages 993-1045, October.
    15. Paolo Rizzi & Paola Graziano & Antonio Dallara, 2018. "A capacity approach to territorial resilience: the case of European regions," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 60(2), pages 285-328, March.
    16. Pérez, Claudia & Claveria, Oscar, 2020. "Natural resources and human development: Evidence from mineral-dependent African countries using exploratory graphical analysis," Resources Policy, Elsevier, vol. 65(C).
    17. Zeynep Ozkok, 2015. "Financial openness and financial development: an analysis using indices," International Review of Applied Economics, Taylor & Francis Journals, vol. 29(5), pages 620-649, September.
    18. B. Yan & X. Su & Y. Chen, 2009. "Functional Structure and Data Management of Urban Water Supply Network Based on GIS," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 23(13), pages 2633-2653, October.
    19. Asongu, Simplice A & Odhiambo, Nicholas M, 2019. "Governance,CO2 emissions and inclusive human development in Sub-Saharan Africa," Working Papers 25253, University of South Africa, Department of Economics.
    20. Anne M. Lausier & Shaleen Jain, 2018. "Diversity in global patterns of observed precipitation variability and change on river basin scales," Climatic Change, Springer, vol. 149(2), pages 261-275, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:waterr:v:27:y:2013:i:7:p:2465-2481. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.