IDEAS home Printed from https://ideas.repec.org/a/spr/endesu/v23y2021i10d10.1007_s10668-021-01309-z.html
   My bibliography  Save this article

Perceptions and adaptation behavior of farmers to climate change in the upper Brahmaputra Valley, India

Author

Listed:
  • Ujjal Deka Baruah

    (Gauhati University
    Cotton University)

  • Anup Saikia

    (Gauhati University)

  • Scott M. Robeson

    (Indiana University)

  • Nitashree Mili

    (Cotton University)

  • Pritam Chand

    (Central University of Punjab)

Abstract

To better understand how farmers perceive and adapt to climate change, climate trends and a survey of farmer attitudes and behavior in the upper Brahmaputra valley zone (UBVZ) of India were analyzed. Rainfall and temperature trends were estimated in combination with the results from a detailed questionnaire of 384 farmers across 20 villages in rainfed areas of the UBVZ. From 1971 to 2007, the annual mean temperature in the UBVZ increased by 0.15 °C/decade while summer rainfall decreased markedly. Logistic regression was used for modeling the perceptions and adaptation behavior of farmers. Farmers perceptions of climate change tended to closely match those estimated from the climate data, but farmers with better access to water resources, credit, and those with higher family income, higher production, and larger farm sizes had more options to adapt and were more likely to adopt techniques to cope with climate change and variability. Factors such as age, education level, and family size of respondents were less likely to impact farmers’ decisions to adapt to climate change.

Suggested Citation

  • Ujjal Deka Baruah & Anup Saikia & Scott M. Robeson & Nitashree Mili & Pritam Chand, 2021. "Perceptions and adaptation behavior of farmers to climate change in the upper Brahmaputra Valley, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 15529-15549, October.
  • Handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01309-z
    DOI: 10.1007/s10668-021-01309-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10668-021-01309-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10668-021-01309-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raju Mandal, 2014. "Cropping Pattern Choice and Risk Mitigation in Flood Affected Agriculture: A Study of Assam Plains, India," Working Papers 1403, Sam Houston State University, Department of Economics and International Business.
    2. Nasir Mahmood & Muhammad Arshad & Harald Kaechele & Muhammad Faisal Shahzad & Ayat Ullah & Klaus Mueller, 2020. "Fatalism, Climate Resiliency Training and Farmers’ Adaptation Responses: Implications for Sustainable Rainfed-Wheat Production in Pakistan," Sustainability, MDPI, vol. 12(4), pages 1-21, February.
    3. B. Fosu-Mensah & P. Vlek & D. MacCarthy, 2012. "Farmers’ perception and adaptation to climate change: a case study of Sekyedumase district in Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 14(4), pages 495-505, August.
    4. Raju Mandal, 2014. "Flood, cropping pattern choice and returns in agriculture: A study of Assam plains, India," Economic Analysis and Policy, Elsevier, vol. 44(3), pages 333-344.
    5. Caviglia-Harris, Jill L, 2003. "Sustainable Agricultural Practices in Rondonia, Brazil: Do Local Farmer Organizations Affect Adoption Rates?," Economic Development and Cultural Change, University of Chicago Press, vol. 52(1), pages 23-49, October.
    6. Oecd, 2009. "Climate Change and Africa," OECD Journal: General Papers, OECD Publishing, vol. 2009(1), pages 5-35.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Arvind Chandra Pandey & Kavita Kaushik & Bikash Ranjan Parida, 2022. "Google Earth Engine for Large-Scale Flood Mapping Using SAR Data and Impact Assessment on Agriculture and Population of Ganga-Brahmaputra Basin," Sustainability, MDPI, vol. 14(7), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seydou Zakari & Germaine Ibro & Bokar Moussa & Tahirou Abdoulaye, 2022. "Adaptation Strategies to Climate Change and Impacts on Household Income and Food Security: Evidence from Sahelian Region of Niger," Sustainability, MDPI, vol. 14(5), pages 1-18, March.
    2. Cook, Aaron M. & Ricker-Gilbert, Jacob E. & Sesmero, Juan P., 2013. "How do African households adapt to climate change? Evidence from Malawi," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 150507, Agricultural and Applied Economics Association.
    3. Nyadzi, Emmanuel, 2016. "Climate Variability Since 1970 and Farmers’ Observations in Northern Ghana," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 5(2).
    4. Alistair Munro, 2020. "Using experimental manipulation of questionnaire design and a Kenyan panel to test for the reliability of reported perceptions of climate change and adaptation," Climatic Change, Springer, vol. 162(3), pages 1081-1105, October.
    5. Bijay Halder & Subhadip Barman & Papiya Banik & Puja Das & Jatisankar Bandyopadhyay & Fredolin Tangang & Shamsuddin Shahid & Chaitanya B. Pande & Baqer Al-Ramadan & Zaher Mundher Yaseen, 2023. "Large-Scale Flood Hazard Monitoring and Impact Assessment on Landscape: Representative Case Study in India," Sustainability, MDPI, vol. 15(14), pages 1-17, July.
    6. Minghui Zhang & Gabriel Abrahao & Sally Thompson, 2021. "Sensitivity of soybean planting date to wet season onset in Mato Grosso, Brazil, and implications under climate change," Climatic Change, Springer, vol. 168(3), pages 1-28, October.
    7. Frédéric Kosmowski & Antoine Leblois & Benjamin Sultan, 2016. "Perceptions of recent rainfall changes in Niger: a comparison between climate-sensitive and non-climate sensitive households," Climatic Change, Springer, vol. 135(2), pages 227-241, March.
    8. Md. Jahangir Kabir & Mohammad Alauddin & Steven Crimp, 2016. "Farm-level Adaptation to Climate Change in Western Bangladesh: An Analysis of Adaptation Dynamics, Profitability and Risks," Discussion Papers Series 576, School of Economics, University of Queensland, Australia.
    9. N & a Kaji Budhathoki, "undated". "Climate Change: Perceptions, Reality and Agricultural Practice: Evidence from Nepal," Working papers 123, The South Asian Network for Development and Environmental Economics.
    10. Isaure Delaporte & Mathilde Maurel, 2018. "Adaptation to climate change in Bangladesh," Climate Policy, Taylor & Francis Journals, vol. 18(1), pages 49-62, January.
    11. Wang, Weijun & Zhao, Xueyan & Cao, Jianjun & Li, Hua & Zhang, Qin, 2020. "Barriers and requirements to climate change adaptation of mountainous rural communities in developing countries: The case of the eastern Qinghai-Tibetan Plateau of China," Land Use Policy, Elsevier, vol. 95(C).
    12. Mustafa, Ghulam & Latif, Ismail Abd & Ashfaq, Muhammad & Bashir, Muhammad Khalid & Shamsudin, Mad Nasir & Wan Daud, Wan Mohamed Noordin, 2017. "Adaptation Process To Climate Change In Agriculture- An Empirical Study," International Journal of Food and Agricultural Economics (IJFAEC), Alanya Alaaddin Keykubat University, Department of Economics and Finance, vol. 5(4), October.
    13. Hou, L. & Min, S. & Huang, Q. & Huang, J., 2018. "Farmers perceptions of, ex ante and ex post adaptations to drought: Empirical evidence from maize farmers in China," 2018 Conference, July 28-August 2, 2018, Vancouver, British Columbia 277208, International Association of Agricultural Economists.
    14. Khan, Nasir Abbas & Qiao, Jiamei & Abid, Muhammad & Gao, Qijie, 2021. "Understanding farm-level cognition of and autonomous adaptation to climate variability and associated factors: Evidence from the rice-growing zone of Pakistan," Land Use Policy, Elsevier, vol. 105(C).
    15. Debashis Roy & Avishek Datta & John K. M. Kuwornu & Farhad Zulfiqar, 2021. "Comparing farmers’ perceptions of climate change with meteorological trends and examining farm adaptation measures in hazard-prone districts of northwest Bangladesh," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 8699-8721, June.
    16. Khanal, Uttam & Wilson, Clevo & Hoang, Vincent & Lee, Boon, 2015. "Autonomous adaptations to climate change and rice productivity: a case study of the Tanahun district, Nepal," MPRA Paper 106916, University Library of Munich, Germany.
    17. Nanda Kaji Budhathoki, 2017. "Climate Change: Perceptions, Reality and Agricultural Practice: Evidence from Nepal," Working Papers id:11903, eSocialSciences.
    18. Etwire, Prince Maxwell, 2020. "The impact of climate change on farming system selection in Ghana," Agricultural Systems, Elsevier, vol. 179(C).
    19. Richard Kofi Asravor, 2022. "On-farm adaptation strategies to climate change: the case of smallholder farmers in the Northern Development Authority Zone of Ghana," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5080-5093, April.
    20. Boris O. K. Lokonon & Aly A. Mbaye, 2018. "Climate change and adoption of sustainable land management practices in the Niger basin of Benin," Natural Resources Forum, Blackwell Publishing, vol. 42(1), pages 42-53, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:endesu:v:23:y:2021:i:10:d:10.1007_s10668-021-01309-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.