Explainable product backorder prediction exploiting CNN: Introducing explainable models in businesses
Author
Abstract
Suggested Citation
DOI: 10.1007/s12525-022-00599-z
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
- Niklas Bussmann & Paolo Giudici & Dimitri Marinelli & Jochen Papenbrock, 2021. "Explainable Machine Learning in Credit Risk Management," Computational Economics, Springer;Society for Computational Economics, vol. 57(1), pages 203-216, January.
- Scott Thiebes & Sebastian Lins & Ali Sunyaev, 2021. "Trustworthy artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 447-464, June.
- Nowak Andrzej S. & Radzik Tadeusz, 1994. "The Shapley Value for n-Person Games in Generalized Characteristic Function Form," Games and Economic Behavior, Elsevier, vol. 6(1), pages 150-161, January.
- Christian Janiesch & Patrick Zschech & Kai Heinrich, 2021. "Machine learning and deep learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(3), pages 685-695, September.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Christian Meske & Babak Abedin & Mathias Klier & Fethi Rabhi, 2022. "Explainable and responsible artificial intelligence," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2103-2106, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rainer Alt, 2021. "Electronic Markets on digital platforms and AI," Electronic Markets, Springer;IIM University of St. Gallen, vol. 31(2), pages 233-241, June.
- Rainer Alt, 2022. "Electronic Markets on AI and standardization," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 1795-1805, December.
- Jonas Wanner & Lukas-Valentin Herm & Kai Heinrich & Christian Janiesch, 2022. "The effect of transparency and trust on intelligent system acceptance: Evidence from a user-based study," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2079-2102, December.
- Niklas Kühl & Max Schemmer & Marc Goutier & Gerhard Satzger, 2022. "Artificial intelligence and machine learning," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2235-2244, December.
- Lukas-Valentin Herm & Theresa Steinbach & Jonas Wanner & Christian Janiesch, 2022. "A nascent design theory for explainable intelligent systems," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(4), pages 2185-2205, December.
- Jen-Yu Lee & Tien-Thinh Nguyen & Hong-Giang Nguyen & Jen-Yao Lee, 2022. "Towards Predictive Crude Oil Purchase: A Case Study in the USA and Europe," Energies, MDPI, vol. 15(11), pages 1-15, May.
- Dangxing Chen, 2023. "Can I Trust the Explanations? Investigating Explainable Machine Learning Methods for Monotonic Models," Papers 2309.13246, arXiv.org.
- Eduard Hartwich & Alexander Rieger & Johannes Sedlmeir & Dominik Jurek & Gilbert Fridgen, 2023. "Machine economies," Electronic Markets, Springer;IIM University of St. Gallen, vol. 33(1), pages 1-13, December.
- Araya-Córdova, P.J. & Vásquez, Óscar C., 2018. "The disaster emergency unit scheduling problem to control wildfires," International Journal of Production Economics, Elsevier, vol. 200(C), pages 311-317.
- Rui Ma & Jia Wang & Wei Zhao & Hongjie Guo & Dongnan Dai & Yuliang Yun & Li Li & Fengqi Hao & Jinqiang Bai & Dexin Ma, 2022. "Identification of Maize Seed Varieties Using MobileNetV2 with Improved Attention Mechanism CBAM," Agriculture, MDPI, vol. 13(1), pages 1-16, December.
- Bastos, João A. & Matos, Sara M., 2022.
"Explainable models of credit losses,"
European Journal of Operational Research, Elsevier, vol. 301(1), pages 386-394.
- João A. Bastos & Sara M. Matos, 2021. "Explainable models of credit losses," Working Papers REM 2021/0161, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
- Dylan Norbert Gono & Herlina Napitupulu & Firdaniza, 2023. "Silver Price Forecasting Using Extreme Gradient Boosting (XGBoost) Method," Mathematics, MDPI, vol. 11(18), pages 1-15, September.
- Tang, Pan & Tang, Tiantian & Lu, Chennuo, 2024. "Predicting systemic financial risk with interpretable machine learning," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).
- Cheng Yang & Fuhao Sun & Yujie Zou & Zhipeng Lv & Liang Xue & Chao Jiang & Shuangyu Liu & Bochao Zhao & Haoyang Cui, 2024. "A Survey of Photovoltaic Panel Overlay and Fault Detection Methods," Energies, MDPI, vol. 17(4), pages 1-37, February.
- Ritu Dutta & Souvik Roy & Surajit Borkotokey, 2023. "The Generalized Shapley Value of Cooperative Games as a Social Preference Function," Group Decision and Negotiation, Springer, vol. 32(2), pages 277-300, April.
- P. Herings & A. Predtetchinski & A. Perea, 2006.
"The Weak Sequential Core for Two-Period Economies,"
International Journal of Game Theory, Springer;Game Theory Society, vol. 34(1), pages 55-65, April.
- Predtetchinski, A. & Herings, P.J.J. & Perea ý Monsuwé, A., 2002. "The weak sequential core for two-period economies," Research Memorandum 011, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
- Predtetchinski A. & Herings P.J.J. & Perea A., 2002. "The Weak Sequential Core for Two-period Economies," Game Theory and Information 0203008, University Library of Munich, Germany.
- Hong, Jichao & Li, Kerui & Liang, Fengwei & Yang, Haixu & Zhang, Chi & Yang, Qianqian & Wang, Jiegang, 2024. "A novel state of health prediction method for battery system in real-world vehicles based on gated recurrent unit neural networks," Energy, Elsevier, vol. 289(C).
- Shuai Sang & Lu Li, 2024. "A Novel Variant of LSTM Stock Prediction Method Incorporating Attention Mechanism," Mathematics, MDPI, vol. 12(7), pages 1-20, March.
- Vladimir Franki & Darin Majnarić & Alfredo Višković, 2023. "A Comprehensive Review of Artificial Intelligence (AI) Companies in the Power Sector," Energies, MDPI, vol. 16(3), pages 1-35, January.
- Billot, Antoine & Thisse, Jacques-Francois, 2005.
"How to share when context matters: The Mobius value as a generalized solution for cooperative games,"
Journal of Mathematical Economics, Elsevier, vol. 41(8), pages 1007-1029, December.
- BILLOT, Antoine & THISSE, Jean-François, 2002. "How to share when context matters: The Möbius value as a generalized solution for cooperative games," LIDAM Discussion Papers CORE 2002025, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Jacques-François Thisse & Antoine Billot, 2005. "How to share when context matters : The Mobius value as a generalized solution for cooperative games," Post-Print halshs-00754051, HAL.
More about this item
Keywords
eXplainable artificial intelligence (XAI); Backorder prediction; CNN; Local explanation; Global explanation;All these keywords.
JEL classification:
- M1 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration
- M15 - Business Administration and Business Economics; Marketing; Accounting; Personnel Economics - - Business Administration - - - IT Management
- O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
- C80 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - General
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elmark:v:32:y:2022:i:4:d:10.1007_s12525-022-00599-z. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.