Price prediction of e-commerce products through Internet sentiment analysis
Author
Abstract
Suggested Citation
DOI: 10.1007/s10660-017-9272-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhishuo Liu & Yongcong Wang & Shuang Zhu & Baopeng Zhang & Lingyun Wei, 2015. "Steel Prices Index Prediction in China Based on BP Neural Network," Springer Books, in: Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), Liss 2014, edition 127, pages 603-608, Springer.
- Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.
- Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
- Ahmed Fathalla & Ahmad Salah & Ahmed Ali, 2023. "A Novel Price Prediction Service for E-Commerce Categorical Data," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
- Aneeta Elsa Simon & Manu K.S., 2023. "Does Sentiments Impact the Returns of Commodity Derivatives? An Evidence from Multi-commodity Exchange India," Vision, , vol. 27(1), pages 79-92, February.
- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Jianping Li & Yinhong Yao & Yuanjie Xu & Jingyu Li & Lu Wei & Xiaoqian Zhu, 2019. "Consumer’s risk perception on the Belt and Road countries: evidence from the cross-border e-commerce," Electronic Commerce Research, Springer, vol. 19(4), pages 823-840, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
- He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
- Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
- Jammazi, Rania, 2012. "Cross dynamics of oil-stock interactions: A redundant wavelet analysis," Energy, Elsevier, vol. 44(1), pages 750-777.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013.
"Robust estimation and forecasting of the long-term seasonal component of electricity spot prices,"
Energy Economics, Elsevier, vol. 39(C), pages 13-27.
- Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafal, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," MPRA Paper 42563, University Library of Munich, Germany.
- Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," HSC Research Reports HSC/12/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
- Jammazi, Rania, 2012.
"Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach,"
Energy, Elsevier, vol. 37(1), pages 430-454.
- Rania Jammazi, 2014. "Oil Shock Transmission to Stock Market Returns: Wavelet Multivariate Markov Switching GARCH Approach," Working Papers 2014-197, Department of Research, Ipag Business School.
- Dimitrios Kartsonakis Mademlis & Nikolaos Dritsakis, 2021. "Volatility Forecasting using Hybrid GARCH Neural Network Models: The Case of the Italian Stock Market," International Journal of Economics and Financial Issues, Econjournals, vol. 11(1), pages 49-60.
- Dimitrios Mouchtaris & Emmanouil Sofianos & Periklis Gogas & Theophilos Papadimitriou, 2021. "Forecasting Natural Gas Spot Prices with Machine Learning," Energies, MDPI, vol. 14(18), pages 1-13, September.
- Singh, Sarbjit & Parmar, Kulwinder Singh & Kumar, Jatinder & Makkhan, Sidhu Jitendra Singh, 2020. "Development of new hybrid model of discrete wavelet decomposition and autoregressive integrated moving average (ARIMA) models in application to one month forecast the casualties cases of COVID-19," Chaos, Solitons & Fractals, Elsevier, vol. 135(C).
- Nazarian, Rafik & Gandali Alikhani, Nadiya & Naderi, Esmaeil & Amiri, Ashkan, 2013. "Forecasting Stock Market Volatility: A Forecast Combination Approach," MPRA Paper 46786, University Library of Munich, Germany.
- Shalini, Velappan & Prasanna, Krishna, 2016. "Impact of the financial crisis on Indian commodity markets: Structural breaks and volatility dynamics," Energy Economics, Elsevier, vol. 53(C), pages 40-57.
- Cheng, Ching-Hsue & Wei, Liang-Ying, 2014. "A novel time-series model based on empirical mode decomposition for forecasting TAIEX," Economic Modelling, Elsevier, vol. 36(C), pages 136-141.
- Wang, Lei & Wang, Xinyu & Zhao, Zhongchao, 2024. "Mid-term electricity demand forecasting using improved multi-mode reconstruction and particle swarm-enhanced support vector regression," Energy, Elsevier, vol. 304(C).
- Joanna Janczura & Rafał Weron, 2012.
"Efficient estimation of Markov regime-switching models: An application to electricity spot prices,"
AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 96(3), pages 385-407, July.
- Weron, Rafal & Janczura, Joanna, 2010. "Efficient estimation of Markov regime-switching models: An application to electricity wholesale market prices," MPRA Paper 26628, University Library of Munich, Germany.
- Joanna Janczura & Rafal Weron, 2011. "Efficient estimation of Markov regime-switching models: An application to electricity spot prices," HSC Research Reports HSC/11/02, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Cenk Ufuk Yıldıran & Abdurrahman Fettahoğlu, 2017. "Forecasting USDTRY rate by ARIMA method," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1335968-133, January.
- Shangkun Deng & Kazuki Yoshiyama & Takashi Mitsubuchi & Akito Sakurai, 2015. "Hybrid Method of Multiple Kernel Learning and Genetic Algorithm for Forecasting Short-Term Foreign Exchange Rates," Computational Economics, Springer;Society for Computational Economics, vol. 45(1), pages 49-89, January.
- Qin Lu & Jingwen Liao & Kechi Chen & Yanhui Liang & Yu Lin, 2024. "Predicting Natural Gas Prices Based on a Novel Hybrid Model with Variational Mode Decomposition," Computational Economics, Springer;Society for Computational Economics, vol. 63(2), pages 639-678, February.
- Mohammad Almasarweh & S. AL Wadi, 2018. "ARIMA Model in Predicting Banking Stock Market Data," Modern Applied Science, Canadian Center of Science and Education, vol. 12(11), pages 309-309, November.
More about this item
Keywords
Keywords; Prediction; Forcasting; E-commerce; Sentiment analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:18:y:2018:i:1:d:10.1007_s10660-017-9272-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.