Price prediction of e-commerce products through Internet sentiment analysis
Author
Abstract
Suggested Citation
DOI: 10.1007/s10660-017-9272-9
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Zhishuo Liu & Yongcong Wang & Shuang Zhu & Baopeng Zhang & Lingyun Wei, 2015. "Steel Prices Index Prediction in China Based on BP Neural Network," Springer Books, in: Zhenji Zhang & Zuojun Max Shen & Juliang Zhang & Runtong Zhang (ed.), Liss 2014, edition 127, pages 603-608, Springer.
- Yousefi, Shahriar & Weinreich, Ilona & Reinarz, Dominik, 2005. "Wavelet-based prediction of oil prices," Chaos, Solitons & Fractals, Elsevier, vol. 25(2), pages 265-275.
- Pai, Ping-Feng & Lin, Chih-Sheng, 2005. "A hybrid ARIMA and support vector machines model in stock price forecasting," Omega, Elsevier, vol. 33(6), pages 497-505, December.
- Nguyen, Hang T. & Nabney, Ian T., 2010. "Short-term electricity demand and gas price forecasts using wavelet transforms and adaptive models," Energy, Elsevier, vol. 35(9), pages 3674-3685.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
- Ahmed Fathalla & Ahmad Salah & Ahmed Ali, 2023. "A Novel Price Prediction Service for E-Commerce Categorical Data," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
- Aneeta Elsa Simon & Manu K.S., 2023. "Does Sentiments Impact the Returns of Commodity Derivatives? An Evidence from Multi-commodity Exchange India," Vision, , vol. 27(1), pages 79-92, February.
- Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
- Jianping Li & Yinhong Yao & Yuanjie Xu & Jingyu Li & Lu Wei & Xiaoqian Zhu, 2019. "Consumer’s risk perception on the Belt and Road countries: evidence from the cross-border e-commerce," Electronic Commerce Research, Springer, vol. 19(4), pages 823-840, December.
- Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- He, Kaijian & Lai, Kin Keung & Yen, Jerome, 2011. "Value-at-risk estimation of crude oil price using MCA based transient risk modeling approach," Energy Economics, Elsevier, vol. 33(5), pages 903-911, September.
- Kriechbaumer, Thomas & Angus, Andrew & Parsons, David & Rivas Casado, Monica, 2014. "An improved wavelet–ARIMA approach for forecasting metal prices," Resources Policy, Elsevier, vol. 39(C), pages 32-41.
- He, Kaijian & Yu, Lean & Lai, Kin Keung, 2012. "Crude oil price analysis and forecasting using wavelet decomposed ensemble model," Energy, Elsevier, vol. 46(1), pages 564-574.
- Jammazi, Rania, 2012. "Cross dynamics of oil-stock interactions: A redundant wavelet analysis," Energy, Elsevier, vol. 44(1), pages 750-777.
- Storrøsten, Halvor Briseid, 2024. "U.S. light tight oil supply flexibility - A multivariate dynamic model for production and rig activity," Energy Economics, Elsevier, vol. 131(C).
- Huang, Shupei & An, Haizhong & Gao, Xiangyun & Sun, Xiaoqi, 2017. "Do oil price asymmetric effects on the stock market persist in multiple time horizons?," Applied Energy, Elsevier, vol. 185(P2), pages 1799-1808.
- Lingling Zhou & Jing Xia & Lijing Yu & Ying Wang & Yun Shi & Shunxiang Cai & Shaofa Nie, 2016. "Using a Hybrid Model to Forecast the Prevalence of Schistosomiasis in Humans," IJERPH, MDPI, vol. 13(4), pages 1-13, March.
- Liyang Tang, 2020. "Application of Nonlinear Autoregressive with Exogenous Input (NARX) neural network in macroeconomic forecasting, national goal setting and global competitiveness assessment," Papers 2005.08735, arXiv.org.
- Kamaladdin Fataliyev & Aneesh Chivukula & Mukesh Prasad & Wei Liu, 2021. "Stock Market Analysis with Text Data: A Review," Papers 2106.12985, arXiv.org, revised Jul 2021.
- Bašta, Milan & Helman, Karel, 2013. "Scale-specific importance of weather variables for explanation of variations of electricity consumption: The case of Prague, Czech Republic," Energy Economics, Elsevier, vol. 40(C), pages 503-514.
- Racine Ly & Fousseini Traore & Khadim Dia, 2021. "Forecasting Commodity Prices Using Long Short-Term Memory Neural Networks," Papers 2101.03087, arXiv.org, revised Jan 2021.
- Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafał, 2013.
"Robust estimation and forecasting of the long-term seasonal component of electricity spot prices,"
Energy Economics, Elsevier, vol. 39(C), pages 13-27.
- Nowotarski, Jakub & Tomczyk, Jakub & Weron, Rafal, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," MPRA Paper 42563, University Library of Munich, Germany.
- Jakub Nowotarski & Jakub Tomczyk & Rafal Weron, 2012. "Robust estimation and forecasting of the long-term seasonal component of electricity spot prices," HSC Research Reports HSC/12/06, Hugo Steinhaus Center, Wroclaw University of Science and Technology.
- Wang, Chao & Lim, Ming K & Zhao, Longfeng & Tseng, Ming-Lang & Chien, Chen-Fu & Lev, Benjamin, 2020. "The evolution of Omega-The International Journal of Management Science over the past 40 years: A bibliometric overview," Omega, Elsevier, vol. 93(C).
- Krzysztof Drachal, 2018. "Determining Time-Varying Drivers of Spot Oil Price in a Dynamic Model Averaging Framework," Energies, MDPI, vol. 11(5), pages 1-24, May.
- Frédy Pokou & Jules Sadefo Kamdem & François Benhmad, 2024.
"Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series,"
Computational Economics, Springer;Society for Computational Economics, vol. 63(4), pages 1349-1399, April.
- Frédy Valé Manuel Pokou & Jules Sadefo Kamdem & François Benhmad, 2023. "Hybridization of ARIMA with Learning Models for Forecasting of Stock Market Time Series," Post-Print hal-04312314, HAL.
- Pinto, T. & Morais, H. & Oliveira, P. & Vale, Z. & Praça, I. & Ramos, C., 2011. "A new approach for multi-agent coalition formation and management in the scope of electricity markets," Energy, Elsevier, vol. 36(8), pages 5004-5015.
- Osmundsen, Petter & Rosendahl, Knut Einar & Skjerpen, Terje, 2012.
"Understanding Rig Rates,"
UiS Working Papers in Economics and Finance
2012/9, University of Stavanger.
- Petter Osmundsen & Knut Einar Rosendahl & Terje Skjerpen, 2013. "Understanding Rig Rates," CESifo Working Paper Series 4532, CESifo.
- Petter Osmundsen & Knut Einar Rosendahl & Terje Skjerpen, 2012. "Understanding rig rates," Discussion Papers 696, Statistics Norway, Research Department.
- Jianrong Wei & Jiping Huang, 2012. "An Exotic Long-Term Pattern in Stock Price Dynamics," PLOS ONE, Public Library of Science, vol. 7(12), pages 1-5, December.
- Jammazi, Rania, 2012.
"Oil shock transmission to stock market returns: Wavelet-multivariate Markov switching GARCH approach,"
Energy, Elsevier, vol. 37(1), pages 430-454.
- Rania Jammazi, 2014. "Oil Shock Transmission to Stock Market Returns: Wavelet Multivariate Markov Switching GARCH Approach," Working Papers 2014-197, Department of Research, Ipag Business School.
- Emmanuel Haven & Xiaoquan Liu & Chenghu Ma & Liya Shen, 2013. "Revealing the Implied Risk-neutral MGF with the Wavelet Method," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
More about this item
Keywords
Keywords; Prediction; Forcasting; E-commerce; Sentiment analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:18:y:2018:i:1:d:10.1007_s10660-017-9272-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.