IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i8p1938-d1128356.html
   My bibliography  Save this article

A Novel Price Prediction Service for E-Commerce Categorical Data

Author

Listed:
  • Ahmed Fathalla

    (Department of Mathematics, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt
    These authors contributed equally to this work.)

  • Ahmad Salah

    (Department of Computer Science, Faculty of Computers and Informatics, Zagazig University, Zagazig 44519, Egypt
    College of Computing and Information Sciences, University of Technology and Applied Sciences, Ibri 516, Oman
    These authors contributed equally to this work.)

  • Ahmed Ali

    (Department of Computer Science, College of Computer Engineering and Sciences, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
    Higher Future Institute for Specialized Technological Studies, Cairo 3044, Egypt
    These authors contributed equally to this work.)

Abstract

Most e-commerce data include items that belong to different categories, e.g., product types on Amazon and eBay. The accurate prediction of an item’s price on an e-commerce platform will facilitate the maximization of economic benefits for the seller and buyer. Consequently, the task of price prediction of e-commerce items can be seen as a multiple regression on categorical data. Performing multiple regression tasks with categorical independent variables is tricky since the observations of each product type might have different distribution shapes, whereas the distribution shape of all the data might not be representative of each group. In this vein, we propose a service for facilitating the price prediction task of e-commerce categorical products. The main novelty of the proposed service relies on two unique data transformations aiming at increasing the between-group variance and decreasing the within-group variance to improve the task of regression analysis on categorical data. The proposed data transformations are tested on four different e-commerce datasets over a set of linear, non-linear, and neural network-based regression models. Comparing the best existing regression models without applying the proposed transformation, the proposed transformation results show improvements in the range of 1.98% to 8.91% for the four evaluation metrics scores, namely, R 2 , MAE, RMSE, and MAPE. However, the best metrics improvement on each dataset has average values of 16.8%, 8.0%, 6.0%, and 25.0% for R 2 , MAE, RMSE, and MAPE, respectively.

Suggested Citation

  • Ahmed Fathalla & Ahmad Salah & Ahmed Ali, 2023. "A Novel Price Prediction Service for E-Commerce Categorical Data," Mathematics, MDPI, vol. 11(8), pages 1-20, April.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1938-:d:1128356
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/8/1938/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/8/1938/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Kuo-Kun Tseng & Regina Fang-Ying Lin & Hongfu Zhou & Kevin Jati Kurniajaya & Qianyu Li, 2018. "Price prediction of e-commerce products through Internet sentiment analysis," Electronic Commerce Research, Springer, vol. 18(1), pages 65-88, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jianping Li & Yinhong Yao & Yuanjie Xu & Jingyu Li & Lu Wei & Xiaoqian Zhu, 2019. "Consumer’s risk perception on the Belt and Road countries: evidence from the cross-border e-commerce," Electronic Commerce Research, Springer, vol. 19(4), pages 823-840, December.
    2. Ransome Epie Bawack & Samuel Fosso Wamba & Kevin Daniel André Carillo & Shahriar Akter, 2022. "Artificial intelligence in E-Commerce: a bibliometric study and literature review," Electronic Markets, Springer;IIM University of St. Gallen, vol. 32(1), pages 297-338, March.
    3. Aneeta Elsa Simon & Manu K.S., 2023. "Does Sentiments Impact the Returns of Commodity Derivatives? An Evidence from Multi-commodity Exchange India," Vision, , vol. 27(1), pages 79-92, February.
    4. Alameer, Zakaria & Fathalla, Ahmed & Li, Kenli & Ye, Haiwang & Jianhua, Zhang, 2020. "Multistep-ahead forecasting of coal prices using a hybrid deep learning model," Resources Policy, Elsevier, vol. 65(C).
    5. Salvatore Carta & Andrea Medda & Alessio Pili & Diego Reforgiato Recupero & Roberto Saia, 2018. "Forecasting E-Commerce Products Prices by Combining an Autoregressive Integrated Moving Average (ARIMA) Model and Google Trends Data," Future Internet, MDPI, vol. 11(1), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:8:p:1938-:d:1128356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.