IDEAS home Printed from https://ideas.repec.org/a/spr/elcore/v24y2024i3d10.1007_s10660-022-09571-7.html
   My bibliography  Save this article

Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China

Author

Listed:
  • Liting Li

    (Southwestern University of Finance and Economics)

  • Haichao Zheng

    (Southwestern University of Finance and Economics)

  • Dongyu Chen

    (SooChow University)

  • Bin Zhu

    (Oregon State University)

Abstract

Online reviews of a firm may come from diverse sources including real customers, competitors, and the firm itself. Review manipulation by posting fake negative reviews about competitors or fake positive reviews oneself has major impacts on product sales and firm reputation. This study aims to answer the question of whose reviews are most valuable for predicting a firm’s default risk. To uncover the value of manipulated and authentic reviews in firm default risk prediction, we conduct an empirical analysis using unique weekly panel data from a third-party portal of online peer-to-peer lending platforms in China. The results indicate that firm default probability increases with the number of manipulated positive reviews in the short term but decreases with the number of manipulated positive reviews posted over the long term. In addition, the signaling role of manipulated positive reviews is stronger when the peer-to-peer lending platform experiences more intense pressure such as downturn of business performance, stricter financial regulation policies, or aggressive attacks from competitors. Manipulated negative reviews are harmful for peer-to-peer lending platforms, which will increase the probability of platform default. Finally, authentic positive reviews are positively associated with default due to the overconfidence effect in the online lending context, and the authentic negative reviews in the short term work as a significant signal for fraud risk.

Suggested Citation

  • Liting Li & Haichao Zheng & Dongyu Chen & Bin Zhu, 2024. "Whose reviews are most valuable for predicting the default risk of peer-to-peer lending platforms? Evidence from China," Electronic Commerce Research, Springer, vol. 24(3), pages 1619-1658, September.
  • Handle: RePEc:spr:elcore:v:24:y:2024:i:3:d:10.1007_s10660-022-09571-7
    DOI: 10.1007/s10660-022-09571-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10660-022-09571-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10660-022-09571-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dina Mayzlin & Yaniv Dover & Judith Chevalier, 2014. "Promotional Reviews: An Empirical Investigation of Online Review Manipulation," American Economic Review, American Economic Association, vol. 104(8), pages 2421-2455, August.
    2. Kihlstrom, Richard E & Riordan, Michael H, 1984. "Advertising as a Signal," Journal of Political Economy, University of Chicago Press, vol. 92(3), pages 427-450, June.
    3. Yi Zhao & Sha Yang & Vishal Narayan & Ying Zhao, 2013. "Modeling Consumer Learning from Online Product Reviews," Marketing Science, INFORMS, vol. 32(1), pages 153-169, May.
    4. Jiandong Chen & Douglas Cumming & Wenxuan Hou & Edward Lee, 2016. "Does the External Monitoring Effect of Financial Analysts Deter Corporate Fraud in China?," Journal of Business Ethics, Springer, vol. 134(4), pages 727-742, April.
    5. Terrance Odean., 1996. "Volume, Volatility, Price and Profit When All Trader Are Above Average," Research Program in Finance Working Papers RPF-266, University of California at Berkeley.
    6. Naveen Kumar & Liangfei Qiu & Subodha Kumar, 2018. "Exit, Voice, and Response on Digital Platforms: An Empirical Investigation of Online Management Response Strategies," Information Systems Research, INFORMS, vol. 29(4), pages 849-870, December.
    7. Milgrom, Paul & Roberts, John, 1986. "Price and Advertising Signals of Product Quality," Journal of Political Economy, University of Chicago Press, vol. 94(4), pages 796-821, August.
    8. Chrysanthos Dellarocas, 2006. "Strategic Manipulation of Internet Opinion Forums: Implications for Consumers and Firms," Management Science, INFORMS, vol. 52(10), pages 1577-1593, October.
    9. Nachiketa Sahoo & Chrysanthos Dellarocas & Shuba Srinivasan, 2018. "The Impact of Online Product Reviews on Product Returns," Information Systems Research, INFORMS, vol. 29(3), pages 723-738, September.
    10. Wessel, Michael & Thies, Ferdinand & Benlian, Alexander, 2016. "The Emergence and Effects of Fake Social Information: Evidence from Crowdfunding," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 82421, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    11. Monic Sun, 2012. "How Does the Variance of Product Ratings Matter?," Management Science, INFORMS, vol. 58(4), pages 696-707, April.
    12. Davide Proserpio & Georgios Zervas, 2017. "Online Reputation Management: Estimating the Impact of Management Responses on Consumer Reviews," Marketing Science, INFORMS, vol. 36(5), pages 645-665, September.
    13. Nelson, Philip, 1974. "Advertising as Information," Journal of Political Economy, University of Chicago Press, vol. 82(4), pages 729-754, July/Aug..
    14. Bahram Soltani, 2014. "The Anatomy of Corporate Fraud: A Comparative Analysis of High Profile American and European Corporate Scandals," Journal of Business Ethics, Springer, vol. 120(2), pages 251-274, March.
    15. Jonah Berger & Alan T. Sorensen & Scott J. Rasmussen, 2010. "Positive Effects of Negative Publicity: When Negative Reviews Increase Sales," Marketing Science, INFORMS, vol. 29(5), pages 815-827, 09-10.
    16. Dellarocas, Chrysanthos, 2003. "The Digitization of Word-of-mouth: Promise and Challenges of Online Feedback Mechanisms," Working papers 4296-03, Massachusetts Institute of Technology (MIT), Sloan School of Management.
    17. Chrysanthos Dellarocas, 2003. "The Digitization of Word of Mouth: Promise and Challenges of Online Feedback Mechanisms," Management Science, INFORMS, vol. 49(10), pages 1407-1424, October.
    18. Paul Povel & Rajdeep Singh & Andrew Winton, 2007. "Booms, Busts, and Fraud," The Review of Financial Studies, Society for Financial Studies, vol. 20(4), pages 1219-1254.
    19. Chris Forman & Anindya Ghose & Batia Wiesenfeld, 2008. "Examining the Relationship Between Reviews and Sales: The Role of Reviewer Identity Disclosure in Electronic Markets," Information Systems Research, INFORMS, vol. 19(3), pages 291-313, September.
    20. Hollenbeck, Brett, 2018. "Online Reputation Mechanisms and the Decreasing Value of Chain Affliation," MPRA Paper 91573, University Library of Munich, Germany.
    21. Dina Mayzlin, 2006. "Promotional Chat on the Internet," Marketing Science, INFORMS, vol. 25(2), pages 155-163, 03-04.
    22. repec:bla:jfinan:v:53:y:1998:i:6:p:1887-1934 is not listed on IDEAS
    23. Khim-Yong Goh & Cheng-Suang Heng & Zhijie Lin, 2013. "Social Media Brand Community and Consumer Behavior: Quantifying the Relative Impact of User- and Marketer-Generated Content," Information Systems Research, INFORMS, vol. 24(1), pages 88-107, March.
    24. Mingfeng Lin & Nagpurnanand R. Prabhala & Siva Viswanathan, 2013. "Judging Borrowers by the Company They Keep: Friendship Networks and Information Asymmetry in Online Peer-to-Peer Lending," Management Science, INFORMS, vol. 59(1), pages 17-35, August.
    25. Bahram Soltani, 2014. "The Anatomy of Corporate Fraud: A Comparative Analysis of High Profile American and European Corporate Scandals," Post-Print hal-03970654, HAL.
    26. Wessel, Michael & Thies, Ferdinand & Benlian, Alexander, 2016. "The Emergence and Effects of Fake Social Information: Evidence from Crowdfunding," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 83005, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    27. Zhuang, Mengzhou & Cui, Geng & Peng, Ling, 2018. "Manufactured opinions: The effect of manipulating online product reviews," Journal of Business Research, Elsevier, vol. 87(C), pages 24-35.
    28. Shaio Yan Huang & Chi-Chen Lin & An-An Chiu & David C. Yen, 2017. "Fraud detection using fraud triangle risk factors," Information Systems Frontiers, Springer, vol. 19(6), pages 1343-1356, December.
    29. Michael Luca & Georgios Zervas, 2016. "Fake It Till You Make It: Reputation, Competition, and Yelp Review Fraud," Management Science, INFORMS, vol. 62(12), pages 3412-3427, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Dominik Gutt & Jürgen Neumann & Steffen Zimmermann & Dennis Kundisch & Jianqing Chen, 2018. "Design of Review Systems - A Strategic Instrument to shape Online Review Behavior and Economic Outcomes," Working Papers Dissertations 42, Paderborn University, Faculty of Business Administration and Economics.
    2. Guo, Qiaozhen & Chen, Ying-Ju & Huang, Wei, 2022. "Dynamic pricing of new experience products with dual-channel social learning and online review manipulations," Omega, Elsevier, vol. 109(C).
    3. Brett Hollenbeck & Sridhar Moorthy & Davide Proserpio, 2019. "Advertising Strategy in the Presence of Reviews: An Empirical Analysis," Marketing Science, INFORMS, vol. 38(5), pages 793-811, September.
    4. Zibo Liu & Zhijie Lin & Ying Zhang & Yong Tan, 2022. "The Signaling Effect of Sampling Size in Physical Goods Sampling Via Online Channels," Production and Operations Management, Production and Operations Management Society, vol. 31(2), pages 529-546, February.
    5. Lingfang (Ivy) Li & Steven Tadelis & Xiaolan Zhou, 2020. "Buying reputation as a signal of quality: Evidence from an online marketplace," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 965-988, December.
    6. Dongpu Fu & Yili Hong & Kanliang Wang & Weiguo Fan, 2018. "Effects of membership tier on user content generation behaviors: evidence from online reviews," Electronic Commerce Research, Springer, vol. 18(3), pages 457-483, September.
    7. Peiyu Chen & Lorin M. Hitt & Yili Hong & Shinyi Wu, 2021. "Measuring Product Type and Purchase Uncertainty with Online Product Ratings: A Theoretical Model and Empirical Application," Information Systems Research, INFORMS, vol. 32(4), pages 1470-1489, December.
    8. Tao Lu & May Yuan & Chong (Alex) Wang & Xiaoquan (Michael) Zhang, 2022. "Histogram Distortion Bias in Consumer Choices," Management Science, INFORMS, vol. 68(12), pages 8963-8978, December.
    9. Moon, Sangkil & Kim, Moon-Yong & Bergey, Paul K., 2019. "Estimating deception in consumer reviews based on extreme terms: Comparison analysis of open vs. closed hotel reservation platforms," Journal of Business Research, Elsevier, vol. 102(C), pages 83-96.
    10. Marios Kokkodis & Theodoros Lappas & Gerald C. Kane, 2022. "Optional purchase verification in e‐commerce platforms: More representative product ratings and higher quality reviews," Production and Operations Management, Production and Operations Management Society, vol. 31(7), pages 2943-2961, July.
    11. Moon, Sangkil & Kim, Moon-Yong & Iacobucci, Dawn, 2021. "Content analysis of fake consumer reviews by survey-based text categorization," International Journal of Research in Marketing, Elsevier, vol. 38(2), pages 343-364.
    12. Tingting Nian & Arun Sundararajan, 2022. "Social Media Marketing, Quality Signaling, and the Goldilocks Principle," Information Systems Research, INFORMS, vol. 33(2), pages 540-556, June.
    13. Harrison-Walker, L. Jean & Jiang, Ying, 2023. "Suspicion of online product reviews as fake: Cues and consequences," Journal of Business Research, Elsevier, vol. 160(C).
    14. Juan Feng & Xin Li & Xiaoquan (Michael) Zhang, 2019. "Online Product Reviews-Triggered Dynamic Pricing: Theory and Evidence," Information Systems Research, INFORMS, vol. 30(4), pages 1107-1123, December.
    15. Mingwen Yang & Zhiqiang (Eric) Zheng & Vijay Mookerjee, 2019. "Prescribing Response Strategies to Manage Customer Opinions: A Stochastic Differential Equation Approach," Information Systems Research, INFORMS, vol. 30(2), pages 351-374, June.
    16. Yasui, Yuta, 2021. "Controlling Fake Reviews," MPRA Paper 108177, University Library of Munich, Germany.
    17. Yabing Jiang & Hong Guo, 2015. "Design of Consumer Review Systems and Product Pricing," Information Systems Research, INFORMS, vol. 26(4), pages 714-730, December.
    18. Yabing Jiang & Hong Guo, 2012. "Design of Consumer Review Systems and Product Pricing," Working Papers 12-10, NET Institute.
    19. Kick, Markus, 2015. "Social Media Research: A Narrative Review," EconStor Preprints 182506, ZBW - Leibniz Information Centre for Economics.
    20. Ana Babić Rosario & Kristine Valck & Francesca Sotgiu, 2020. "Conceptualizing the electronic word-of-mouth process: What we know and need to know about eWOM creation, exposure, and evaluation," Journal of the Academy of Marketing Science, Springer, vol. 48(3), pages 422-448, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:elcore:v:24:y:2024:i:3:d:10.1007_s10660-022-09571-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.