IDEAS home Printed from https://ideas.repec.org/p/hal/journl/hal-04731912.html
   My bibliography  Save this paper

Learning smooth graphs with sparse temporal variations to explore long-term financial trends

Author

Listed:
  • Cécile Bastidon

    (LEAD - Laboratoire d'Économie Appliquée au Développement - UTLN - Université de Toulon)

  • Myriam Bontonou

    (LBMC UMR 5239 - Laboratoire de biologie et modélisation de la cellule - ENS de Lyon - École normale supérieure de Lyon - UCBL - Université Claude Bernard Lyon 1 - Université de Lyon - INSERM - Institut National de la Santé et de la Recherche Médicale - CNRS - Centre National de la Recherche Scientifique, Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Pierre Borgnat

    (Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Pablo Jensen

    (Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Patrice Abry

    (Phys-ENS - Laboratoire de Physique de l'ENS Lyon - ENS de Lyon - École normale supérieure de Lyon - Université de Lyon - CNRS - Centre National de la Recherche Scientifique)

  • Antoine Parent

    (LED - Laboratoire d'Economie Dionysien - UP8 - Université Paris 8 Vincennes-Saint-Denis)

Abstract

The return of inflation raises the issues of assessing cross-dependencies in the interest rates of long-term government bonds. Learning cross-dependencies directly from data is framed here as a graph learning problem that requires to address the issues of bond rates heterogeneous and nonstationary evolutions, with sharp changes along time and across countries, and of managing missing samples. As a first contribution, the present work devises a data driven time-dependent graph for bonds markets, specifically based on risk premia. As a second contribution, it shows the relevance of such constructions when applied to a broad database of 29 countries over 6 decades (1960-2020), that includes the high inflation episode of the 1970s.

Suggested Citation

  • Cécile Bastidon & Myriam Bontonou & Pierre Borgnat & Pablo Jensen & Patrice Abry & Antoine Parent, 2024. "Learning smooth graphs with sparse temporal variations to explore long-term financial trends," Post-Print hal-04731912, HAL.
  • Handle: RePEc:hal:journl:hal-04731912
    Note: View the original document on HAL open archive server: https://hal.science/hal-04731912v1
    as

    Download full text from publisher

    File URL: https://hal.science/hal-04731912v1/document
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hal:journl:hal-04731912. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: CCSD (email available below). General contact details of provider: https://hal.archives-ouvertes.fr/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.