IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v134y2007i2d10.1007_s10957-007-9263-4.html
   My bibliography  Save this article

New Branch-and-Cut Algorithm for Bilevel Linear Programming

Author

Listed:
  • C. Audet

    (GERAD and École Polytechnique de Montréal)

  • G. Savard

    (GERAD and École Polytechnique de Montréal)

  • W. Zghal

    (GERAD and École Polytechnique de Montréal)

Abstract

Linear mixed 0–1 integer programming problems may be reformulated as equivalent continuous bilevel linear programming (BLP) problems. We exploit these equivalences to transpose the concept of mixed 0–1 Gomory cuts to BLP. The first phase of our new algorithm generates Gomory-like cuts. The second phase consists of a branch-and-bound procedure to ensure finite termination with a global optimal solution. Different features of the algorithm, in particular, the cut selection and branching criteria are studied in details. We propose also a set of algorithmic tests and procedures to improve the method. Finally, we illustrate the performance through numerical experiments. Our algorithm outperforms pure branch-and-bound when tested on a series of randomly generated problems.

Suggested Citation

  • C. Audet & G. Savard & W. Zghal, 2007. "New Branch-and-Cut Algorithm for Bilevel Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 134(2), pages 353-370, August.
  • Handle: RePEc:spr:joptap:v:134:y:2007:i:2:d:10.1007_s10957-007-9263-4
    DOI: 10.1007/s10957-007-9263-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-007-9263-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-007-9263-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wayne F. Bialas & Mark H. Karwan, 1984. "Two-Level Linear Programming," Management Science, INFORMS, vol. 30(8), pages 1004-1020, August.
    2. C. Audet & P. Hansen & B. Jaumard & G. Savard, 1997. "Links Between Linear Bilevel and Mixed 0–1 Programming Problems," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 273-300, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoai An Thi & Thi Minh Tam Nguyen & Tao Pham Dinh, 2023. "On solving difference of convex functions programs with linear complementarity constraints," Computational Optimization and Applications, Springer, vol. 86(1), pages 163-197, September.
    2. Joaquim Júdice, 2012. "Algorithms for linear programming with linear complementarity constraints," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 20(1), pages 4-25, April.
    3. Lizhi Wang, 2013. "Branch-and-bound algorithms for the partial inverse mixed integer linear programming problem," Journal of Global Optimization, Springer, vol. 55(3), pages 491-506, March.
    4. Zhang, Ying & Snyder, Lawrence V. & Ralphs, Ted K. & Xue, Zhaojie, 2016. "The competitive facility location problem under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 453-473.
    5. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    6. M. Hosein Zare & Osman Y. Özaltın & Oleg A. Prokopyev, 2018. "On a class of bilevel linear mixed-integer programs in adversarial settings," Journal of Global Optimization, Springer, vol. 71(1), pages 91-113, May.
    7. Yohan Shim & Marte Fodstad & Steven Gabriel & Asgeir Tomasgard, 2013. "A branch-and-bound method for discretely-constrained mathematical programs with equilibrium constraints," Annals of Operations Research, Springer, vol. 210(1), pages 5-31, November.
    8. Rahman Khorramfar & Osman Y. Özaltın & Karl G. Kempf & Reha Uzsoy, 2022. "Managing Product Transitions: A Bilevel Programming Approach," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2828-2844, September.
    9. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    10. Yu-Ching Lee & Jong-Shi Pang & John Mitchell, 2015. "An algorithm for global solution to bi-parametric linear complementarity constrained linear programs," Journal of Global Optimization, Springer, vol. 62(2), pages 263-297, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Dong & Chen, Mingyuan, 2006. "Capacitated plant selection in a decentralized manufacturing environment: A bilevel optimization approach," European Journal of Operational Research, Elsevier, vol. 169(1), pages 97-110, February.
    2. Bhatt, Sneha Dhyani & Sinha, Ankur & Jayaswal, Sachin, 2024. "The capacitated r-hub interdiction problem with congestion: Models and solution approaches," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 185(C).
    3. Bo Zeng, 2020. "A Practical Scheme to Compute the Pessimistic Bilevel Optimization Problem," INFORMS Journal on Computing, INFORMS, vol. 32(4), pages 1128-1142, October.
    4. Thomas Kleinert & Martine Labbé & Fr¨ank Plein & Martin Schmidt, 2020. "Technical Note—There’s No Free Lunch: On the Hardness of Choosing a Correct Big-M in Bilevel Optimization," Operations Research, INFORMS, vol. 68(6), pages 1716-1721, November.
    5. M. Hosein Zare & Juan S. Borrero & Bo Zeng & Oleg A. Prokopyev, 2019. "A note on linearized reformulations for a class of bilevel linear integer problems," Annals of Operations Research, Springer, vol. 272(1), pages 99-117, January.
    6. Cao, D. & Leung, L. C., 2002. "A partial cooperation model for non-unique linear two-level decision problems," European Journal of Operational Research, Elsevier, vol. 140(1), pages 134-141, July.
    7. Benoît Colson & Patrice Marcotte & Gilles Savard, 2007. "An overview of bilevel optimization," Annals of Operations Research, Springer, vol. 153(1), pages 235-256, September.
    8. Jean Etoa, 2010. "Solving convex quadratic bilevel programming problems using an enumeration sequential quadratic programming algorithm," Journal of Global Optimization, Springer, vol. 47(4), pages 615-637, August.
    9. Junlong Zhang & Osman Y. Özaltın, 2021. "Bilevel Integer Programs with Stochastic Right-Hand Sides," INFORMS Journal on Computing, INFORMS, vol. 33(4), pages 1644-1660, October.
    10. Alain Billionnet & Sourour Elloumi & Amélie Lambert, 2013. "An efficient compact quadratic convex reformulation for general integer quadratic programs," Computational Optimization and Applications, Springer, vol. 54(1), pages 141-162, January.
    11. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    12. Sinha, Surabhi & Sinha, S. B., 2002. "KKT transformation approach for multi-objective multi-level linear programming problems," European Journal of Operational Research, Elsevier, vol. 143(1), pages 19-31, November.
    13. Ahlatcioglu, Mehmet & Tiryaki, Fatma, 2007. "Interactive fuzzy programming for decentralized two-level linear fractional programming (DTLLFP) problems," Omega, Elsevier, vol. 35(4), pages 432-450, August.
    14. S. Dempe & S. Franke, 2016. "On the solution of convex bilevel optimization problems," Computational Optimization and Applications, Springer, vol. 63(3), pages 685-703, April.
    15. S A Gabriel & Y Shim & A J Conejo & S de la Torre & R García-Bertrand, 2010. "A Benders decomposition method for discretely-constrained mathematical programs with equilibrium constraints," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(9), pages 1404-1419, September.
    16. Kuo, R.J. & Lee, Y.H. & Zulvia, Ferani E. & Tien, F.C., 2015. "Solving bi-level linear programming problem through hybrid of immune genetic algorithm and particle swarm optimization algorithm," Applied Mathematics and Computation, Elsevier, vol. 266(C), pages 1013-1026.
    17. Moon, Kyungduk & Lee, Kangbok & Chopra, Sunil & Kwon, Steve, 2022. "Bilevel integer programming on a Boolean network for discovering critical genetic alterations in cancer development and therapy," European Journal of Operational Research, Elsevier, vol. 300(2), pages 743-754.
    18. Dariush Akbarian, 2020. "Overall profit Malmquist productivity index under data uncertainty," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-20, December.
    19. Mojtaba Borza & Azmin Sham Rambely & Mansour Saraj, 2014. "Two-Level Linear Programming Problems with Two Decision-Makers at the Upper Level: An Interactive Fuzzy Approach," Modern Applied Science, Canadian Center of Science and Education, vol. 8(4), pages 211-211, August.
    20. Calvete, Herminia I. & Gale, Carmen, 2004. "A note on `bilevel linear fractional programming problem'," European Journal of Operational Research, Elsevier, vol. 152(1), pages 296-299, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:134:y:2007:i:2:d:10.1007_s10957-007-9263-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.