IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v83y2022i1d10.1007_s10589-022-00385-9.html
   My bibliography  Save this article

Projected orthogonal vectors in two-dimensional search interior point algorithms for linear programming

Author

Listed:
  • Fabio Vitor

    (University of Nebraska at Omaha)

  • Todd Easton

    (The University of Utah)

Abstract

The vast majority of linear programming interior point algorithms successively move from an interior solution to an improved interior solution by following a single search direction, which corresponds to solving a one-dimensional subspace linear program at each iteration. On the other hand, two-dimensional search interior point algorithms select two search directions, and determine a new and improved interior solution by solving a two-dimensional subspace linear program at each step. This paper presents primal and dual two-dimensional search interior point algorithms derived from affine and logarithmic barrier search directions. Both search directions are determined by randomly partitioning the objective function into two orthogonal vectors. Computational experiments performed on benchmark instances demonstrate that these new methods improve the average CPU time by approximately 12% and the average number of iterations by 14%.

Suggested Citation

  • Fabio Vitor & Todd Easton, 2022. "Projected orthogonal vectors in two-dimensional search interior point algorithms for linear programming," Computational Optimization and Applications, Springer, vol. 83(1), pages 211-246, September.
  • Handle: RePEc:spr:coopap:v:83:y:2022:i:1:d:10.1007_s10589-022-00385-9
    DOI: 10.1007/s10589-022-00385-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00385-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00385-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mousaab Bouafia & Djamel Benterki & Adnan Yassine, 2016. "An Efficient Primal–Dual Interior Point Method for Linear Programming Problems Based on a New Kernel Function with a Trigonometric Barrier Term," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 528-545, August.
    2. Paul T. Boggs & Paul D. Domich & Janet R. Donaldson & Christoph Witzgall, 1989. "Algorithmic Enhancements to the Method of Centers for Linear Programming Problems," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 159-171, August.
    3. Alireza Asadi & Cornelis Roos, 2016. "Infeasible Interior-Point Methods for Linear Optimization Based on Large Neighborhood," Journal of Optimization Theory and Applications, Springer, vol. 170(2), pages 562-590, August.
    4. Yaguang Yang, 2013. "A Polynomial Arc-Search Interior-Point Algorithm for Linear Programming," Journal of Optimization Theory and Applications, Springer, vol. 158(3), pages 859-873, September.
    5. Gondzio, Jacek, 2012. "Interior point methods 25 years later," European Journal of Operational Research, Elsevier, vol. 218(3), pages 587-601.
    6. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    7. Luiz-Rafael Santos & Fernando Villas-Bôas & Aurelio R. L. Oliveira & Clovis Perin, 2019. "Optimized choice of parameters in interior-point methods for linear programming," Computational Optimization and Applications, Springer, vol. 73(2), pages 535-574, June.
    8. Takashi Tsuchiya, 1992. "Global Convergence Property of the Affine Scaling Methods for Primal Degenerate Linear Programming Problems," Mathematics of Operations Research, INFORMS, vol. 17(3), pages 527-557, August.
    9. Illes, Tibor & Terlaky, Tamas, 2002. "Pivot versus interior point methods: Pros and cons," European Journal of Operational Research, Elsevier, vol. 140(2), pages 170-190, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fabio Vitor & Todd Easton, 2018. "The double pivot simplex method," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(1), pages 109-137, February.
    2. Liu, Yanwu & Tu, Yan & Zhang, Zhongzhen, 2021. "The row pivoting method for linear programming," Omega, Elsevier, vol. 100(C).
    3. Castro, Jordi & Escudero, Laureano F. & Monge, Juan F., 2023. "On solving large-scale multistage stochastic optimization problems with a new specialized interior-point approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 268-285.
    4. Luciana Casacio & Aurelio R. L. Oliveira & Christiano Lyra, 2018. "Using groups in the splitting preconditioner computation for interior point methods," 4OR, Springer, vol. 16(4), pages 401-410, December.
    5. Stefano Cipolla & Jacek Gondzio, 2023. "Proximal Stabilized Interior Point Methods and Low-Frequency-Update Preconditioning Techniques," Journal of Optimization Theory and Applications, Springer, vol. 197(3), pages 1061-1103, June.
    6. Bittencourt, Tiberio & Ferreira, Orizon Pereira, 2015. "Local convergence analysis of Inexact Newton method with relative residual error tolerance under majorant condition in Riemannian manifolds," Applied Mathematics and Computation, Elsevier, vol. 261(C), pages 28-38.
    7. Fatemeh Marzbani & Akmal Abdelfatah, 2024. "Economic Dispatch Optimization Strategies and Problem Formulation: A Comprehensive Review," Energies, MDPI, vol. 17(3), pages 1-31, January.
    8. Csizmadia, Zsolt & Illés, Tibor & Nagy, Adrienn, 2012. "The s-monotone index selection rules for pivot algorithms of linear programming," European Journal of Operational Research, Elsevier, vol. 221(3), pages 491-500.
    9. M. Pirhaji & M. Zangiabadi & H. Mansouri, 2017. "An $$\ell _{2}$$ ℓ 2 -neighborhood infeasible interior-point algorithm for linear complementarity problems," 4OR, Springer, vol. 15(2), pages 111-131, June.
    10. Stefania Bellavia & Valentina De Simone & Daniela di Serafino & Benedetta Morini, 2016. "On the update of constraint preconditioners for regularized KKT systems," Computational Optimization and Applications, Springer, vol. 65(2), pages 339-360, November.
    11. Yu, Jianxi & Liu, Pei & Li, Zheng, 2021. "Data reconciliation of the thermal system of a double reheat power plant for thermal calculation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    12. de Groot, Oliver & Mazelis, Falk & Motto, Roberto & Ristiniemi, Annukka, 2021. "A toolkit for computing Constrained Optimal Policy Projections (COPPs)," Working Paper Series 2555, European Central Bank.
    13. Martijn H. H. Schoot Uiterkamp & Marco E. T. Gerards & Johann L. Hurink, 2022. "On a Reduction for a Class of Resource Allocation Problems," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1387-1402, May.
    14. Cecilia Orellana Castro & Manolo Rodriguez Heredia & Aurelio R. L. Oliveira, 2023. "Recycling basic columns of the splitting preconditioner in interior point methods," Computational Optimization and Applications, Springer, vol. 86(1), pages 49-78, September.
    15. repec:hal:wpaper:hal-03715954 is not listed on IDEAS
    16. Enrico Bettiol & Lucas Létocart & Francesco Rinaldi & Emiliano Traversi, 2020. "A conjugate direction based simplicial decomposition framework for solving a specific class of dense convex quadratic programs," Computational Optimization and Applications, Springer, vol. 75(2), pages 321-360, March.
    17. Paul Tseng, 2004. "Convergence Properties of Dikin’s Affine Scaling Algorithm for Nonconvex Quadratic Minimization," Journal of Global Optimization, Springer, vol. 30(2), pages 285-300, November.
    18. Manolo Rodriguez Heredia & Aurelio Ribeiro Leite Oliveira, 2020. "A new proposal to improve the early iterations in the interior point method," Annals of Operations Research, Springer, vol. 287(1), pages 185-208, April.
    19. Dominik Garmatter & Margherita Porcelli & Francesco Rinaldi & Martin Stoll, 2023. "An improved penalty algorithm using model order reduction for MIPDECO problems with partial observations," Computational Optimization and Applications, Springer, vol. 84(1), pages 191-223, January.
    20. Gondzio, Jacek, 2016. "Crash start of interior point methods," European Journal of Operational Research, Elsevier, vol. 255(1), pages 308-314.
    21. Adrienn Csizmadia & Zsolt Csizmadia & Tibor Illés, 2018. "Finiteness of the quadratic primal simplex method when s-monotone index selection rules are applied," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 26(3), pages 535-550, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:83:y:2022:i:1:d:10.1007_s10589-022-00385-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.