IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v82y2022i2d10.1007_s10589-022-00362-2.html
   My bibliography  Save this article

QUAntum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization

Author

Listed:
  • Arnaud Flori

    (Univ Paris Est Creteil, LISSI)

  • Hamouche Oulhadj

    (Univ Paris Est Creteil, LISSI)

  • Patrick Siarry

    (Univ Paris Est Creteil, LISSI)

Abstract

Particle Swarm Optimization (PSO) is a population-based metaheuristic belonging to the class of Swarm Intelligence (SI) algorithms. Nowadays, its effectiveness on many hard problems is no longer to be proven. Nevertheless, it is known to be strongly sensitive on the choice of its settings and weak for local search. In this paper, we propose a new algorithm, called QUAntum Particle Swarm Optimization (QUAPSO) based on quantum superposition to set the velocity PSO parameters, simplifying the settings of the algorithm. Another improvement, inspired by Kangaroo Algorithm (KA), was added to PSO in order to optimize its efficiency in local search. QUAPSO was compared with a set of six well-known algorithms from the literature (two parameter sets of classical PSO, KA, Differential Evolution, Simulated Annealing Particle Swarm Optimization, Bat Algorithm and Simulated Annealing Gaussian Bat Algorithm). The experimental results show that QUAPSO outperforms the competing algorithms on a set of 30 test functions.

Suggested Citation

  • Arnaud Flori & Hamouche Oulhadj & Patrick Siarry, 2022. "QUAntum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization," Computational Optimization and Applications, Springer, vol. 82(2), pages 525-559, June.
  • Handle: RePEc:spr:coopap:v:82:y:2022:i:2:d:10.1007_s10589-022-00362-2
    DOI: 10.1007/s10589-022-00362-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-022-00362-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-022-00362-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Manoj Dhadwal & Sung Jung & Chang Kim, 2014. "Advanced particle swarm assisted genetic algorithm for constrained optimization problems," Computational Optimization and Applications, Springer, vol. 58(3), pages 781-806, July.
    2. Maurice Clerc, 2010. "Beyond Standard Particle Swarm Optimisation," International Journal of Swarm Intelligence Research (IJSIR), IGI Global, vol. 1(4), pages 46-61, October.
    3. Kalyanmoy Deb & Nikhil Padhye, 2014. "Enhancing performance of particle swarm optimization through an algorithmic link with genetic algorithms," Computational Optimization and Applications, Springer, vol. 57(3), pages 761-794, April.
    4. Jietao Dong & Linxuan Zhang & Tianyuan Xiao, 2018. "A hybrid PSO/SA algorithm for bi-criteria stochastic line balancing with flexible task times and zoning constraints," Journal of Intelligent Manufacturing, Springer, vol. 29(4), pages 737-751, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Diefenbach, Johannes & Stolletz, Raik, 2022. "Stochastic assembly line balancing: General bounds and reliability-based branch-and-bound algorithm," European Journal of Operational Research, Elsevier, vol. 302(2), pages 589-605.
    2. Minjeong Sim & Dongjun Suh & Marc-Oliver Otto, 2021. "Multi-Objective Particle Swarm Optimization-Based Decision Support Model for Integrating Renewable Energy Systems in a Korean Campus Building," Sustainability, MDPI, vol. 13(15), pages 1-18, August.
    3. Zhangling Xiao & Mingjin Zhang & Zhongmin Liang & Jian Wang & Yude Zhu & Binquan Li & Yiming Hu & Jun Wang & Xiaolei Jiang, 2024. "Improved Multi-objective Butterfly Optimization Algorithm and its Application in Cascade Reservoirs Optimal Operation Considering Ecological Flow," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 38(12), pages 4803-4821, September.
    4. Mohamed R. Torkomany & Hassan Shokry Hassan & Amin Shoukry & Mohamed Hussein & Chihiro Yoshimura & Mohamed Elkholy, 2023. "Investigation of Optimum Sustainable Designs for Water Distribution Systems from Multiple Economic, Operational, and Health Perspectives," Sustainability, MDPI, vol. 15(2), pages 1-17, January.
    5. Kazem Shahverdi & Hossein Talebmorad, 2023. "Automating HEC-RAS and Linking with Particle Swarm Optimizer to Calibrate Manning’s Roughness Coefficient," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 37(2), pages 975-993, January.
    6. Ascher, Simon & Watson, Ian & You, Siming, 2022. "Machine learning methods for modelling the gasification and pyrolysis of biomass and waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    7. Blom, Evelin & Söder, Lennart, 2022. "Accurate model reduction of large hydropower systems with associated adaptive inflow," Renewable Energy, Elsevier, vol. 200(C), pages 1059-1067.
    8. Gao, Shujun & de Silva, Clarence W., 2018. "Estimation distribution algorithms on constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 323-345.
    9. Qiang Yang & Yu-Wei Bian & Xu-Dong Gao & Dong-Dong Xu & Zhen-Yu Lu & Sang-Woon Jeon & Jun Zhang, 2022. "Stochastic Triad Topology Based Particle Swarm Optimization for Global Numerical Optimization," Mathematics, MDPI, vol. 10(7), pages 1-39, March.
    10. Emre Yakut & Ezel Özkan, 2020. "Modeling of Energy Consumption Forecast with Economic Indicators Using Particle Swarm Optimization and Genetic Algorithm: An Application in Turkey between 1979 and 2050," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 8(1), pages 59-78, June.
    11. Zhen, Lu & Wu, Yiwei & Wang, Shuaian & Laporte, Gilbert, 2020. "Green technology adoption for fleet deployment in a shipping network," Transportation Research Part B: Methodological, Elsevier, vol. 139(C), pages 388-410.
    12. Takele Ferede Agajie & Armand Fopah-Lele & Isaac Amoussou & Ahmed Ali & Baseem Khan & Emmanuel Tanyi, 2023. "Optimal Design and Mathematical Modeling of Hybrid Solar PV–Biogas Generator with Energy Storage Power Generation System in Multi-Objective Function Cases," Sustainability, MDPI, vol. 15(10), pages 1-26, May.
    13. Battaïa, Olga & Dolgui, Alexandre, 2022. "Hybridizations in line balancing problems: A comprehensive review on new trends and formulations," International Journal of Production Economics, Elsevier, vol. 250(C).
    14. Wu, Taocheng & Wu, Jiajing & You, Wei, 2018. "Optimizing robustness of complex networks with heterogeneous node functions based on the Memetic Algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 511(C), pages 143-153.
    15. Sunil Kumar Mishra & Amitkumar V. Jha & Vijay Kumar Verma & Bhargav Appasani & Almoataz Y. Abdelaziz & Nicu Bizon, 2021. "An Optimized Triggering Algorithm for Event-Triggered Control of Networked Control Systems," Mathematics, MDPI, vol. 9(11), pages 1-22, May.
    16. Gilani, Seyyed-Omid & Sattarvand, Javad & Hajihassani, Mohsen & Abdullah, Shahrum Shah, 2020. "A stochastic particle swarm based model for long term production planning of open pit mines considering the geological uncertainty," Resources Policy, Elsevier, vol. 68(C).
    17. Raghav Prasad Parouha & Pooja Verma, 2022. "An innovative hybrid algorithm for bound-unconstrained optimization problems and applications," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1273-1336, June.
    18. Sunil Kumar Mishra & Amitkumar V. Jha & Bhargav Appasani & Nicu Bizon & Phatiphat Thounthong & Pongsiri Mungporn, 2023. "Ocean Wave Energy Control Using Aquila Optimization Technique," Energies, MDPI, vol. 16(11), pages 1-21, June.
    19. Fontes, Dalila B.M.M. & Homayouni, S. Mahdi & Gonçalves, José F., 2023. "A hybrid particle swarm optimization and simulated annealing algorithm for the job shop scheduling problem with transport resources," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1140-1157.
    20. Yin, Xiuxing & Zhao, Xiaowei & Lin, Jin & Karcanias, Aris, 2020. "Reliability aware multi-objective predictive control for wind farm based on machine learning and heuristic optimizations," Energy, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:82:y:2022:i:2:d:10.1007_s10589-022-00362-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.