Advanced particle swarm assisted genetic algorithm for constrained optimization problems
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-014-9637-0
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kalyanmoy Deb & Soumil Srivastava, 2012. "A genetic algorithm based augmented Lagrangian method for constrained optimization," Computational Optimization and Applications, Springer, vol. 53(3), pages 869-902, December.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arnaud Flori & Hamouche Oulhadj & Patrick Siarry, 2022. "QUAntum Particle Swarm Optimization: an auto-adaptive PSO for local and global optimization," Computational Optimization and Applications, Springer, vol. 82(2), pages 525-559, June.
- Gao, Shujun & de Silva, Clarence W., 2018. "Estimation distribution algorithms on constrained optimization problems," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 323-345.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ana Maria A. C. Rocha & M. Fernanda P. Costa & Edite M. G. P. Fernandes, 2017. "On a smoothed penalty-based algorithm for global optimization," Journal of Global Optimization, Springer, vol. 69(3), pages 561-585, November.
- Ana Rocha & M. Costa & Edite Fernandes, 2014. "A filter-based artificial fish swarm algorithm for constrained global optimization: theoretical and practical issues," Journal of Global Optimization, Springer, vol. 60(2), pages 239-263, October.
- Asghar Mahdavi & Mohammad Shiri, 2015. "An augmented Lagrangian ant colony based method for constrained optimization," Computational Optimization and Applications, Springer, vol. 60(1), pages 263-276, January.
- Umesh Balande & Deepti Shrimankar, 2020. "An oracle penalty and modified augmented Lagrangian methods with firefly algorithm for constrained optimization problems," Operational Research, Springer, vol. 20(2), pages 985-1010, June.
More about this item
Keywords
Evolutionary computation; Particle swarm; Genetic algorithm; Rank-based multi-parent crossover; Constrained optimization; Feasible population;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:58:y:2014:i:3:p:781-806. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.