IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v78y2021i1d10.1007_s10589-020-00234-7.html
   My bibliography  Save this article

Decomposition and discrete approximation methods for solving two-stage distributionally robust optimization problems

Author

Listed:
  • Yannan Chen

    (South China Normal University)

  • Hailin Sun

    (Nanjing Normal University)

  • Huifu Xu

    (The Chinese University of Hong Kong)

Abstract

Decomposition methods have been well studied for solving two-stage and multi-stage stochastic programming problems, see Rockafellar and Wets (Math. Oper. Res. 16:119–147, 1991), Ruszczyński and Shapiro (Stochastic Programming, Handbook in OR & MS, North-Holland Publishing Company, Amsterdam, 2003) and Ruszczyński (Math. Program. 79:333–353, 1997). In this paper, we propose an algorithmic framework based on the fundamental ideas of the methods for solving two-stage minimax distributionally robust optimization (DRO) problems where the underlying random variables take a finite number of distinct values. This is achieved by introducing nonanticipativity constraints for the first stage decision variables, rearranging the minimax problem through Lagrange decomposition and applying the well-known primal-dual hybrid gradient (PDHG) method to the new minimax problem. The algorithmic framework does not depend on specific structure of the ambiguity set. To extend the algorithm to the case that the underlying random variables are continuously distributed, we propose a discretization scheme and quantify the error arising from the discretization in terms of the optimal value and the optimal solutions when the ambiguity set is constructed through generalized prior moment conditions, the Kantorovich ball and $$\phi$$ ϕ -divergence centred at an empirical probability distribution. Some preliminary numerical tests show the proposed decomposition algorithm featured with parallel computing performs well.

Suggested Citation

  • Yannan Chen & Hailin Sun & Huifu Xu, 2021. "Decomposition and discrete approximation methods for solving two-stage distributionally robust optimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 205-238, January.
  • Handle: RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00234-7
    DOI: 10.1007/s10589-020-00234-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-020-00234-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-020-00234-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Georg Ch. Pflug & Alois Pichler, 2011. "Approximations for Probability Distributions and Stochastic Optimization Problems," International Series in Operations Research & Management Science, in: Marida Bertocchi & Giorgio Consigli & Michael A. H. Dempster (ed.), Stochastic Optimization Methods in Finance and Energy, edition 1, chapter 0, pages 343-387, Springer.
    2. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    3. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    4. Hailin Sun & Huifu Xu, 2016. "Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 377-401, May.
    5. R. T. Rockafellar & Roger J.-B. Wets, 1991. "Scenarios and Policy Aggregation in Optimization Under Uncertainty," Mathematics of Operations Research, INFORMS, vol. 16(1), pages 119-147, February.
    6. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    7. Alison L. Gibbs & Francis Edward Su, 2002. "On Choosing and Bounding Probability Metrics," International Statistical Review, International Statistical Institute, vol. 70(3), pages 419-435, December.
    8. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    9. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.
    10. Georg Pflug & David Wozabal, 2007. "Ambiguity in portfolio selection," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 435-442.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shanshan Wang & Erick Delage, 2024. "A Column Generation Scheme for Distributionally Robust Multi-Item Newsvendor Problems," INFORMS Journal on Computing, INFORMS, vol. 36(3), pages 849-867, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.
    2. Nilay Noyan & Gábor Rudolf & Miguel Lejeune, 2022. "Distributionally Robust Optimization Under a Decision-Dependent Ambiguity Set with Applications to Machine Scheduling and Humanitarian Logistics," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 729-751, March.
    3. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    4. Jiang, Jie & Peng, Shen, 2024. "Mathematical programs with distributionally robust chance constraints: Statistical robustness, discretization and reformulation," European Journal of Operational Research, Elsevier, vol. 313(2), pages 616-627.
    5. Steffen Rebennack, 2022. "Data-driven stochastic optimization for distributional ambiguity with integrated confidence region," Journal of Global Optimization, Springer, vol. 84(2), pages 255-293, October.
    6. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    7. Chen, Qingxin & Ma, Shoufeng & Li, Hongming & Zhu, Ning & He, Qiao-Chu, 2024. "Optimizing bike rebalancing strategies in free-floating bike-sharing systems: An enhanced distributionally robust approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).
    8. Luo, Fengqiao & Mehrotra, Sanjay, 2019. "Decomposition algorithm for distributionally robust optimization using Wasserstein metric with an application to a class of regression models," European Journal of Operational Research, Elsevier, vol. 278(1), pages 20-35.
    9. Jose Blanchet & Karthyek Murthy, 2019. "Quantifying Distributional Model Risk via Optimal Transport," Mathematics of Operations Research, INFORMS, vol. 44(2), pages 565-600, May.
    10. Viet Anh Nguyen & Soroosh Shafiee & Damir Filipovi'c & Daniel Kuhn, 2021. "Mean-Covariance Robust Risk Measurement," Papers 2112.09959, arXiv.org, revised Nov 2023.
    11. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
    12. Akshit Goyal & Yiling Zhang & Chuan He, 2023. "Decision Rule Approaches for Pessimistic Bilevel Linear Programs Under Moment Ambiguity with Facility Location Applications," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1342-1360, November.
    13. Yongzhen Li & Xueping Li & Jia Shu & Miao Song & Kaike Zhang, 2022. "A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 407-426, January.
    14. Jose Blanchet & Lin Chen & Xun Yu Zhou, 2022. "Distributionally Robust Mean-Variance Portfolio Selection with Wasserstein Distances," Management Science, INFORMS, vol. 68(9), pages 6382-6410, September.
    15. Feng Liu & Zhi Chen & Shuming Wang, 2023. "Globalized Distributionally Robust Counterpart," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 1120-1142, September.
    16. Yining Gu & Yicheng Huang & Yanjun Wang, 2024. "Data-Driven Distributionally Robust Risk-Averse Two-Stage Stochastic Linear Programming over Wasserstein Ball," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 242-279, January.
    17. Hailin Sun & Huifu Xu, 2016. "Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 377-401, May.
    18. Shuang Lin & Jie Zhang & Nan Shi, 2022. "An Alternating Iteration Algorithm for a Parameter-Dependent Distributionally Robust Optimization Model," Mathematics, MDPI, vol. 10(7), pages 1-12, April.
    19. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    20. Manish Bansal & Yingqiu Zhang, 2021. "Scenario-based cuts for structured two-stage stochastic and distributionally robust p-order conic mixed integer programs," Journal of Global Optimization, Springer, vol. 81(2), pages 391-433, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:78:y:2021:i:1:d:10.1007_s10589-020-00234-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.