IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v35y2023i6p1342-1360.html
   My bibliography  Save this article

Decision Rule Approaches for Pessimistic Bilevel Linear Programs Under Moment Ambiguity with Facility Location Applications

Author

Listed:
  • Akshit Goyal

    (Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

  • Yiling Zhang

    (Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

  • Chuan He

    (Department of Industrial and Systems Engineering, University of Minnesota, Minneapolis, Minnesota 55455)

Abstract

We study a pessimistic stochastic bilevel program in the context of sequential two-player games, where the leader makes a binary here-and-now decision, and the follower responds with a continuous wait-and-see decision after observing the leader’s action and revelation of uncertainty. We assume that only the information regarding the mean, covariance, and support is known. We formulate the problem as a distributionally robust (DR) two-stage problem. The pessimistic DR bilevel program is shown to be equivalent to a generic two-stage distributionally robust stochastic (nonlinear) program with both a random objective and random constraints under proper conditions of ambiguity sets. Under continuous distributions, using linear decision rule approaches, we construct upper bounds on the pessimistic DR bilevel program based on (1) a 0-1 semidefinite programming (SDP) approximation and (2) an exact 0-1 copositive programming reformulation. When the ambiguity set is restricted to discrete distributions, an exact 0-1 SDP reformulation is developed, and explicit construction of the worst-case distribution is derived. To further improve the computation of the proposed 0-1 SDPs, a cutting-plane framework is developed. Moreover, based on a mixed-integer linear programming approximation, another cutting-plane algorithm is proposed. Extensive numerical studies are conducted to demonstrate the effectiveness of the proposed approaches on a facility location problem.

Suggested Citation

  • Akshit Goyal & Yiling Zhang & Chuan He, 2023. "Decision Rule Approaches for Pessimistic Bilevel Linear Programs Under Moment Ambiguity with Facility Location Applications," INFORMS Journal on Computing, INFORMS, vol. 35(6), pages 1342-1360, November.
  • Handle: RePEc:inm:orijoc:v:35:y:2023:i:6:p:1342-1360
    DOI: 10.1287/ijoc.2022.0168
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0168
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0168?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hailin Sun & Huifu Xu, 2016. "Convergence Analysis for Distributionally Robust Optimization and Equilibrium Problems," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 377-401, May.
    2. A. Shapiro, 2006. "Stochastic Programming with Equilibrium Constraints," Journal of Optimization Theory and Applications, Springer, vol. 128(1), pages 221-243, January.
    3. Guanglin Xu & Samuel Burer, 2018. "A data-driven distributionally robust bound on the expected optimal value of uncertain mixed 0-1 linear programming," Computational Management Science, Springer, vol. 15(1), pages 111-134, January.
    4. Johanna Burtscheidt & Matthias Claus, 2020. "Bilevel Linear Optimization Under Uncertainty," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 485-511, Springer.
    5. Weijun Xie & Shabbir Ahmed, 2018. "Distributionally robust simple integer recourse," Computational Management Science, Springer, vol. 15(3), pages 351-367, October.
    6. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    7. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    8. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    9. Onur Tavaslıoğlu & Oleg A. Prokopyev & Andrew J. Schaefer, 2019. "Solving Stochastic and Bilevel Mixed-Integer Programs via a Generalized Value Function," Operations Research, INFORMS, vol. 67(6), pages 1659-1677, November.
    10. Stephan Dempe, 2020. "Bilevel Optimization: Theory, Algorithms, Applications and a Bibliography," Springer Optimization and Its Applications, in: Stephan Dempe & Alain Zemkoho (ed.), Bilevel Optimization, chapter 0, pages 581-672, Springer.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yannan Chen & Hailin Sun & Huifu Xu, 2021. "Decomposition and discrete approximation methods for solving two-stage distributionally robust optimization problems," Computational Optimization and Applications, Springer, vol. 78(1), pages 205-238, January.
    2. Zhao, Kena & Ng, Tsan Sheng & Tan, Chin Hon & Pang, Chee Khiang, 2021. "An almost robust model for minimizing disruption exposures in supply systems," European Journal of Operational Research, Elsevier, vol. 295(2), pages 547-559.
    3. Xiaojiao Tong & Hailin Sun & Xiao Luo & Quanguo Zheng, 2018. "Distributionally robust chance constrained optimization for economic dispatch in renewable energy integrated systems," Journal of Global Optimization, Springer, vol. 70(1), pages 131-158, January.
    4. Dey, Shibshankar & Kim, Cheolmin & Mehrotra, Sanjay, 2024. "An algorithm for stochastic convex-concave fractional programs with applications to production efficiency and equitable resource allocation," European Journal of Operational Research, Elsevier, vol. 315(3), pages 980-990.
    5. Yang, Yongjian & Yin, Yunqiang & Wang, Dujuan & Ignatius, Joshua & Cheng, T.C.E. & Dhamotharan, Lalitha, 2023. "Distributionally robust multi-period location-allocation with multiple resources and capacity levels in humanitarian logistics," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1042-1062.
    6. Andrew J. Keith & Darryl K. Ahner, 2021. "A survey of decision making and optimization under uncertainty," Annals of Operations Research, Springer, vol. 300(2), pages 319-353, May.
    7. Shehadeh, Karmel S. & Cohn, Amy E.M. & Jiang, Ruiwei, 2020. "A distributionally robust optimization approach for outpatient colonoscopy scheduling," European Journal of Operational Research, Elsevier, vol. 283(2), pages 549-561.
    8. Lu, Mengshi & Nakao, Hideaki & Shen, Siqian & Zhao, Lin, 2021. "Non-profit resource allocation and service scheduling with cross-subsidization and uncertain resource consumptions," Omega, Elsevier, vol. 99(C).
    9. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.
    10. van Eekelen, Wouter, 2023. "Distributionally robust views on queues and related stochastic models," Other publications TiSEM 9b99fc05-9d68-48eb-ae8c-9, Tilburg University, School of Economics and Management.
    11. Napat Rujeerapaiboon & Daniel Kuhn & Wolfram Wiesemann, 2016. "Robust Growth-Optimal Portfolios," Management Science, INFORMS, vol. 62(7), pages 2090-2109, July.
    12. Yongzhen Li & Xueping Li & Jia Shu & Miao Song & Kaike Zhang, 2022. "A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 407-426, January.
    13. Guopeng Song & Roel Leus, 2022. "Parallel Machine Scheduling Under Uncertainty: Models and Exact Algorithms," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 3059-3079, November.
    14. Wang, Changjun & Chen, Shutong, 2020. "A distributionally robust optimization for blood supply network considering disasters," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    15. Karthik Natarajan & Melvyn Sim & Joline Uichanco, 2018. "Asymmetry and Ambiguity in Newsvendor Models," Management Science, INFORMS, vol. 64(7), pages 3146-3167, July.
    16. Yining Gu & Yicheng Huang & Yanjun Wang, 2024. "Data-Driven Distributionally Robust Risk-Averse Two-Stage Stochastic Linear Programming over Wasserstein Ball," Journal of Optimization Theory and Applications, Springer, vol. 200(1), pages 242-279, January.
    17. Yongchao Liu & Alois Pichler & Huifu Xu, 2019. "Discrete Approximation and Quantification in Distributionally Robust Optimization," Mathematics of Operations Research, INFORMS, vol. 44(1), pages 19-37, February.
    18. Zhi Chen & Melvyn Sim & Huan Xu, 2019. "Distributionally Robust Optimization with Infinitely Constrained Ambiguity Sets," Operations Research, INFORMS, vol. 67(5), pages 1328-1344, September.
    19. Zhang, Hanxiao & Li, Yan-Fu, 2022. "Robust optimization on redundancy allocation problems in multi-state and continuous-state series–parallel systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    20. Ruiwei Jiang & Siqian Shen & Yiling Zhang, 2017. "Integer Programming Approaches for Appointment Scheduling with Random No-Shows and Service Durations," Operations Research, INFORMS, vol. 65(6), pages 1638-1656, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:35:y:2023:i:6:p:1342-1360. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.