IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v34y2022i1p407-426.html
   My bibliography  Save this article

A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions

Author

Listed:
  • Yongzhen Li

    (Department of Management Science and Engineering, School of Economics and Management, Southeast University, Nanjing, Jiangsu 210096, China)

  • Xueping Li

    (Department of Industrial and Systems Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996)

  • Jia Shu

    (School of Management and Economics, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, China)

  • Miao Song

    (Department of Logistics and Maritime Studies, Faculty of Business, The Hong Kong Polytechnic University, Hong Kong, China)

  • Kaike Zhang

    (Department of Industrial and Systems Engineering, The University of Tennessee at Knoxville, Knoxville, Tennessee 37996)

Abstract

This paper studies the reliable uncapacitated facility location problem in which facilities are subject to uncertain disruptions. A two-stage distributionally robust model is formulated, which optimizes the facility location decisions so as to minimize the fixed facility location cost and the expected transportation cost of serving customers under the worst-case disruption distribution. The model is formulated in a general form, where the uncertain joint distribution of disruptions is partially characterized and is allowed to have any prespecified dependency structure. This model extends several related models in the literature, including the stochastic one with explicitly given disruption distribution and the robust one with moment information on disruptions. An efficient cutting plane algorithm is proposed to solve this model, where the separation problem is solved respectively by a polynomial-time algorithm in the stochastic case and by a column generation approach in the robust case. Extensive numerical study shows that the proposed cutting plane algorithm not only outperforms the best-known algorithm in the literature for the stochastic problem under independent disruptions but also efficiently solves the robust problem under correlated disruptions. The practical performance of the robust models is verified in a simulation based on historical typhoon data in China. The numerical results further indicate that the robust model with even a small amount of information on disruption correlation can mitigate the conservativeness and improve the location decision significantly. Summary of Contribution: In this paper, we study the reliable uncapacitated facility location problem under uncertain facility disruptions. The problem is formulated as a two-stage distributionally robust model, which generalizes several related models in the literature, including the stochastic one with explicitly given disruption distribution and the robust one with moment information on disruptions. To solve this generalized model, we propose a cutting plane algorithm, where the separation problem is solved respectively by a polynomial-time algorithm in the stochastic case and by a column generation approach in the robust case. The efficiency and effectiveness of the proposed algorithm are validated through extensive numerical experiments. We also conduct a data-driven simulation based on historical typhoon data in China to verify the practical performance of the proposed robust model. The numerical results further reveal insights into the value of information on disruption correlation in improving the robust location decisions.

Suggested Citation

  • Yongzhen Li & Xueping Li & Jia Shu & Miao Song & Kaike Zhang, 2022. "A General Model and Efficient Algorithms for Reliable Facility Location Problem Under Uncertain Disruptions," INFORMS Journal on Computing, INFORMS, vol. 34(1), pages 407-426, January.
  • Handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:407-426
    DOI: 10.1287/ijoc.2021.1063
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2021.1063
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2021.1063?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Tingting Cui & Yanfeng Ouyang & Zuo-Jun Max Shen, 2010. "Reliable Facility Location Design Under the Risk of Disruptions," Operations Research, INFORMS, vol. 58(4-part-1), pages 998-1011, August.
    2. Lian Qi & Zuo-Jun Max Shen & Lawrence V. Snyder, 2010. "The Effect of Supply Disruptions on Supply Chain Design Decisions," Transportation Science, INFORMS, vol. 44(2), pages 274-289, May.
    3. Xin Chen & Melvyn Sim & Peng Sun & Jiawei Zhang, 2008. "A Linear Decision-Based Approximation Approach to Stochastic Programming," Operations Research, INFORMS, vol. 56(2), pages 344-357, April.
    4. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    5. Yongzhen Li & Jia Shu & Miao Song & Jiawei Zhang & Huan Zheng, 2017. "Multisourcing Supply Network Design: Two-Stage Chance-Constrained Model, Tractable Approximations, and Computational Results," INFORMS Journal on Computing, INFORMS, vol. 29(2), pages 287-300, May.
    6. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    7. Nader Azad & Georgios Saharidis & Hamid Davoudpour & Hooman Malekly & Seyed Yektamaram, 2013. "Strategies for protecting supply chain networks against facility and transportation disruptions: an improved Benders decomposition approach," Annals of Operations Research, Springer, vol. 210(1), pages 125-163, November.
    8. Liberatore, Federico & Scaparra, Maria P. & Daskin, Mark S., 2012. "Hedging against disruptions with ripple effects in location analysis," Omega, Elsevier, vol. 40(1), pages 21-30, January.
    9. Wolfram Wiesemann & Daniel Kuhn & Melvyn Sim, 2014. "Distributionally Robust Convex Optimization," Operations Research, INFORMS, vol. 62(6), pages 1358-1376, December.
    10. Dimitris Bertsimas & Xuan Vinh Doan & Karthik Natarajan & Chung-Piaw Teo, 2010. "Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion," Mathematics of Operations Research, INFORMS, vol. 35(3), pages 580-602, August.
    11. Lawrence V. Snyder & Mark S. Daskin, 2005. "Reliability Models for Facility Location: The Expected Failure Cost Case," Transportation Science, INFORMS, vol. 39(3), pages 400-416, August.
    12. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    13. Li, Xiaopeng & Ouyang, Yanfeng, 2010. "A continuum approximation approach to reliable facility location design under correlated probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 44(4), pages 535-548, May.
    14. Robert Aboolian & Tingting Cui & Zuo-Jun Max Shen, 2013. "An Efficient Approach for Solving Reliable Facility Location Models," INFORMS Journal on Computing, INFORMS, vol. 25(4), pages 720-729, November.
    15. Michael K. Lim & Achal Bassamboo & Sunil Chopra & Mark S. Daskin, 2013. "Facility Location Decisions with Random Disruptions and Imperfect Estimation," Manufacturing & Service Operations Management, INFORMS, vol. 15(2), pages 239-249, May.
    16. O'Hanley, Jesse R. & Church, Richard L., 2011. "Designing robust coverage networks to hedge against worst-case facility losses," European Journal of Operational Research, Elsevier, vol. 209(1), pages 23-36, February.
    17. Berman, Oded & Krass, Dmitry & Menezes, Mozart B.C., 2013. "Location and reliability problems on a line: Impact of objectives and correlated failures on optimal location patterns," Omega, Elsevier, vol. 41(4), pages 766-779.
    18. Joel Goh & Melvyn Sim, 2010. "Distributionally Robust Optimization and Its Tractable Approximations," Operations Research, INFORMS, vol. 58(4-part-1), pages 902-917, August.
    19. Aharon Ben-Tal & Dick den Hertog & Anja De Waegenaere & Bertrand Melenberg & Gijs Rennen, 2013. "Robust Solutions of Optimization Problems Affected by Uncertain Probabilities," Management Science, INFORMS, vol. 59(2), pages 341-357, April.
    20. Chuen-Teck See & Melvyn Sim, 2010. "Robust Approximation to Multiperiod Inventory Management," Operations Research, INFORMS, vol. 58(3), pages 583-594, June.
    21. Ioana Popescu, 2007. "Robust Mean-Covariance Solutions for Stochastic Optimization," Operations Research, INFORMS, vol. 55(1), pages 98-112, February.
    22. Cui, Tingting & Ouyang, Yanfeng & Shen, Zuo-Jun Max J, 2010. "Reliable Facility Location Design under the Risk of Disruptions," University of California Transportation Center, Working Papers qt5sh2c7pw, University of California Transportation Center.
    23. Zuo-Jun Max Shen & Roger Lezhou Zhan & Jiawei Zhang, 2011. "The Reliable Facility Location Problem: Formulations, Heuristics, and Approximation Algorithms," INFORMS Journal on Computing, INFORMS, vol. 23(3), pages 470-482, August.
    24. Erick Delage & Yinyu Ye, 2010. "Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems," Operations Research, INFORMS, vol. 58(3), pages 595-612, June.
    25. Lawrence V. Snyder & Zümbül Atan & Peng Peng & Ying Rong & Amanda J. Schmitt & Burcu Sinsoysal, 2016. "OR/MS models for supply chain disruptions: a review," IISE Transactions, Taylor & Francis Journals, vol. 48(2), pages 89-109, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Víctor Blanco & Elena Fernández & Yolanda Hinojosa, 2023. "Hub Location with Protection Under Interhub Link Failures," INFORMS Journal on Computing, INFORMS, vol. 35(5), pages 966-985, September.
    2. Juan F. Gomez & Anna Martínez-Gavara & Javier Panadero & Angel A. Juan & Rafael Martí, 2024. "A Forward–Backward Simheuristic for the Stochastic Capacitated Dispersion Problem," Mathematics, MDPI, vol. 12(6), pages 1-22, March.
    3. Cao, Yunzhi & Zhu, Xiaoyan & Yan, Houmin, 2022. "Data-driven Wasserstein distributionally robust mitigation and recovery against random supply chain disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    4. Xiangyi Fan & Grani A. Hanasusanto, 2024. "A Decision Rule Approach for Two-Stage Data-Driven Distributionally Robust Optimization Problems with Random Recourse," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 526-542, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aldrighetti, Riccardo & Battini, Daria & Ivanov, Dmitry & Zennaro, Ilenia, 2021. "Costs of resilience and disruptions in supply chain network design models: A review and future research directions," International Journal of Production Economics, Elsevier, vol. 235(C).
    2. Nader Azad & Elkafi Hassini, 2019. "A Benders Decomposition Method for Designing Reliable Supply Chain Networks Accounting for Multimitigation Strategies and Demand Losses," Transportation Science, INFORMS, vol. 53(5), pages 1287-1312, September.
    3. Azad, Nader & Hassini, Elkafi, 2019. "Recovery strategies from major supply disruptions in single and multiple sourcing networks," European Journal of Operational Research, Elsevier, vol. 275(2), pages 481-501.
    4. Cheng, Chun & Yu, Qinxiao & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2024. "Distributionally robust facility location with uncertain facility capacity and customer demand," Omega, Elsevier, vol. 122(C).
    5. Mengshi Lu & Lun Ran & Zuo-Jun Max Shen, 2015. "Reliable Facility Location Design Under Uncertain Correlated Disruptions," Manufacturing & Service Operations Management, INFORMS, vol. 17(4), pages 445-455, October.
    6. Zhang, Yanzi & Diabat, Ali & Zhang, Zhi-Hai, 2021. "Reliable closed-loop supply chain design problem under facility-type-dependent probabilistic disruptions," Transportation Research Part B: Methodological, Elsevier, vol. 146(C), pages 180-209.
    7. Cheng, Chun & Adulyasak, Yossiri & Rousseau, Louis-Martin, 2021. "Robust facility location under demand uncertainty and facility disruptions," Omega, Elsevier, vol. 103(C).
    8. Jabbarzadeh, Armin & Fahimnia, Behnam & Sheu, Jiuh-Biing & Moghadam, Hani Shahmoradi, 2016. "Designing a supply chain resilient to major disruptions and supply/demand interruptions," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 121-149.
    9. Abdolreza Roshani & Philip Walker-Davies & Glenn Parry, 2024. "Designing resilient supply chain networks: a systematic literature review of mitigation strategies," Annals of Operations Research, Springer, vol. 341(2), pages 1267-1332, October.
    10. Li, Xiaopeng & Ouyang, Yanfeng & Peng, Fan, 2013. "A supporting station model for reliable infrastructure location design under interdependent disruptions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 60(C), pages 80-93.
    11. Wang, Zhaodong & Xie, Siyang & Ouyang, Yanfeng, 2022. "Planning reliable service facility location against disruption risks and last-mile congestion in a continuous space," Transportation Research Part B: Methodological, Elsevier, vol. 165(C), pages 123-140.
    12. Cheng, Chun & Qi, Mingyao & Zhang, Ying & Rousseau, Louis-Martin, 2018. "A two-stage robust approach for the reliable logistics network design problem," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 185-202.
    13. Basciftci, Beste & Ahmed, Shabbir & Shen, Siqian, 2021. "Distributionally robust facility location problem under decision-dependent stochastic demand," European Journal of Operational Research, Elsevier, vol. 292(2), pages 548-561.
    14. O’Hanley, Jesse R. & Scaparra, M. Paola & García, Sergio, 2013. "Probability chains: A general linearization technique for modeling reliability in facility location and related problems," European Journal of Operational Research, Elsevier, vol. 230(1), pages 63-75.
    15. Lu, Xiaohan & Cheng, Chun, 2021. "Locating facilities with resiliency to capacity failures and correlated demand uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    16. Albareda-Sambola, Maria & Hinojosa, Yolanda & Puerto, Justo, 2015. "The reliable p-median problem with at-facility service," European Journal of Operational Research, Elsevier, vol. 245(3), pages 656-666.
    17. Albareda-Sambola, Maria & Landete, Mercedes & Monge, Juan F. & Sainz-Pardo, José L., 2017. "Introducing capacities in the location of unreliable facilities," European Journal of Operational Research, Elsevier, vol. 259(1), pages 175-188.
    18. Xie, Siyang & An, Kun & Ouyang, Yanfeng, 2019. "Planning facility location under generally correlated facility disruptions: Use of supporting stations and quasi-probabilities," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 115-139.
    19. Tianqi Liu & Francisco Saldanha-da-Gama & Shuming Wang & Yuchen Mao, 2022. "Robust Stochastic Facility Location: Sensitivity Analysis and Exact Solution," INFORMS Journal on Computing, INFORMS, vol. 34(5), pages 2776-2803, September.
    20. Cui, Jianxun & Zhao, Meng & Li, Xiaopeng & Parsafard, Mohsen & An, Shi, 2016. "Reliable design of an integrated supply chain with expedited shipments under disruption risks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 143-163.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:34:y:2022:i:1:p:407-426. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.