IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v125y2005i3d10.1007_s10957-005-2088-0.html
   My bibliography  Save this article

Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 2: Application

Author

Listed:
  • G. Fasano

    (University of Rome-La Sapienza)

Abstract

In this paper, we describe an application of the planar conjugate gradient method introduced in Part 1 (Ref. 1) and aimed at solving indefinite nonsingular sets of linear equations. We prove that it can be used fruitfully within optimization frameworks; in particular, we present a globally convergent truncated Newton scheme, which uses the above planar method for solving the Newton equation. Finally, our approach is tested over several problems from the CUTE collection (Ref. 2).

Suggested Citation

  • G. Fasano, 2005. "Planar Conjugate Gradient Algorithm for Large-Scale Unconstrained Optimization, Part 2: Application," Journal of Optimization Theory and Applications, Springer, vol. 125(3), pages 543-558, June.
  • Handle: RePEc:spr:joptap:v:125:y:2005:i:3:d:10.1007_s10957-005-2088-0
    DOI: 10.1007/s10957-005-2088-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-005-2088-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-005-2088-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Caliciotti & Giovanni Fasano & Florian Potra & Massimo Roma, 2020. "Issues on the use of a modified Bunch and Kaufman decomposition for large scale Newton’s equation," Computational Optimization and Applications, Springer, vol. 77(3), pages 627-651, December.
    2. Renato De Leone & Giovanni Fasano & Yaroslav D. Sergeyev, 2018. "Planar methods and grossone for the Conjugate Gradient breakdown in nonlinear programming," Computational Optimization and Applications, Springer, vol. 71(1), pages 73-93, September.
    3. Giovanni Fasano & Raffaele Pesenti, 2017. "Conjugate Direction Methods and Polarity for Quadratic Hypersurfaces," Journal of Optimization Theory and Applications, Springer, vol. 175(3), pages 764-794, December.
    4. Renato Leone & Giovanni Fasano & Massimo Roma & Yaroslav D. Sergeyev, 2020. "Iterative Grossone-Based Computation of Negative Curvature Directions in Large-Scale Optimization," Journal of Optimization Theory and Applications, Springer, vol. 186(2), pages 554-589, August.
    5. G. Fasano, 2007. "Lanczos Conjugate-Gradient Method and Pseudoinverse Computation on Indefinite and Singular Systems," Journal of Optimization Theory and Applications, Springer, vol. 132(2), pages 267-285, February.
    6. Giovanni Fasano, 2015. "A Framework of Conjugate Direction Methods for Symmetric Linear Systems in Optimization," Journal of Optimization Theory and Applications, Springer, vol. 164(3), pages 883-914, March.
    7. Giovanni Fasano & Massimo Roma, 2013. "Preconditioning Newton–Krylov methods in nonconvex large scale optimization," Computational Optimization and Applications, Springer, vol. 56(2), pages 253-290, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:125:y:2005:i:3:d:10.1007_s10957-005-2088-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.