IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v68y2017i3d10.1007_s10589-017-9933-6.html
   My bibliography  Save this article

$$\ell _p$$ ℓ p Regularized low-rank approximation via iterative reweighted singular value minimization

Author

Listed:
  • Zhaosong Lu

    (Simon Fraser University)

  • Yong Zhang

    (Colin Artificial Intelligence Lab Ltd.)

  • Jian Lu

    (Shenzhen University)

Abstract

In this paper we study the $$\ell _p$$ ℓ p (or Schatten-p quasi-norm) regularized low-rank approximation problems. In particular, we introduce a class of first-order stationary points for them and show that any local minimizer of these problems must be a first-order stationary point. In addition, we derive lower bounds for the nonzero singular values of the first-order stationary points and hence also of the local minimizers of these problems. The iterative reweighted singular value minimization (IRSVM) methods are then proposed to solve these problems, whose subproblems are shown to have a closed-form solution. Compared to the analogous methods for the $$\ell _p$$ ℓ p regularized vector minimization problems, the convergence analysis of these methods is significantly more challenging. We develop a novel approach to establishing the convergence of the IRSVM methods, which makes use of the expression of a specific solution of their subproblems and avoids the intricate issue of finding the explicit expression for the Clarke subdifferential of the objective of their subproblems. In particular, we show that any accumulation point of the sequence generated by the IRSVM methods is a first-order stationary point of the problems. Our computational results demonstrate that the IRSVM methods generally outperform the recently developed iterative reweighted least squares methods in terms of solution quality and/or speed.

Suggested Citation

  • Zhaosong Lu & Yong Zhang & Jian Lu, 2017. "$$\ell _p$$ ℓ p Regularized low-rank approximation via iterative reweighted singular value minimization," Computational Optimization and Applications, Springer, vol. 68(3), pages 619-642, December.
  • Handle: RePEc:spr:coopap:v:68:y:2017:i:3:d:10.1007_s10589-017-9933-6
    DOI: 10.1007/s10589-017-9933-6
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9933-6
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9933-6?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaojun Chen & Weijun Zhou, 2014. "Convergence of the reweighted ℓ 1 minimization algorithm for ℓ 2 –ℓ p minimization," Computational Optimization and Applications, Springer, vol. 59(1), pages 47-61, October.
    2. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    3. Lingchen Kong & Naihua Xiu, 2013. "EXACT LOW-RANK MATRIX RECOVERY VIA NONCONVEX SCHATTEN p-MINIMIZATION," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 30(03), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Quan Yu & Xinzhen Zhang, 2022. "A smoothing proximal gradient algorithm for matrix rank minimization problem," Computational Optimization and Applications, Springer, vol. 81(2), pages 519-538, March.
    2. Hao Wang & Fan Zhang & Yuanming Shi & Yaohua Hu, 2021. "Nonconvex and Nonsmooth Sparse Optimization via Adaptively Iterative Reweighted Methods," Journal of Global Optimization, Springer, vol. 81(3), pages 717-748, November.
    3. Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
    4. Yaohua Hu & Jiawen Li & Carisa Kwok Wai Yu, 2020. "Convergence rates of subgradient methods for quasi-convex optimization problems," Computational Optimization and Applications, Springer, vol. 77(1), pages 183-212, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuerui Gao & Yanqin Bai & Qian Li, 2021. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$ L 2 - L p regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 42(4), pages 760-784, November.
    2. Peiran Yu & Ting Kei Pong, 2019. "Iteratively reweighted $$\ell _1$$ ℓ 1 algorithms with extrapolation," Computational Optimization and Applications, Springer, vol. 73(2), pages 353-386, June.
    3. Xuerui Gao & Yanqin Bai & Qian Li, 0. "A sparse optimization problem with hybrid $$L_2{\text {-}}L_p$$L2-Lp regularization for application of magnetic resonance brain images," Journal of Combinatorial Optimization, Springer, vol. 0, pages 1-25.
    4. Yu-Fan Li & Kun Shang & Zheng-Hai Huang, 2019. "A singular value p-shrinkage thresholding algorithm for low rank matrix recovery," Computational Optimization and Applications, Springer, vol. 73(2), pages 453-476, June.
    5. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    6. Guan, Wei & Gray, Alexander, 2013. "Sparse high-dimensional fractional-norm support vector machine via DC programming," Computational Statistics & Data Analysis, Elsevier, vol. 67(C), pages 136-148.
    7. Margherita Giuzio, 2017. "Genetic algorithm versus classical methods in sparse index tracking," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 40(1), pages 243-256, November.
    8. Chang, Jinyuan & Chen, Song Xi & Chen, Xiaohong, 2015. "High dimensional generalized empirical likelihood for moment restrictions with dependent data," Journal of Econometrics, Elsevier, vol. 185(1), pages 283-304.
    9. Xu, Yang & Zhao, Shishun & Hu, Tao & Sun, Jianguo, 2021. "Variable selection for generalized odds rate mixture cure models with interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 156(C).
    10. Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-dimensional econometrics and regularized GMM," CeMMAP working papers CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Emmanouil Androulakis & Christos Koukouvinos & Kalliopi Mylona & Filia Vonta, 2010. "A real survival analysis application via variable selection methods for Cox's proportional hazards model," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(8), pages 1399-1406.
    12. Meng An & Haixiang Zhang, 2023. "High-Dimensional Mediation Analysis for Time-to-Event Outcomes with Additive Hazards Model," Mathematics, MDPI, vol. 11(24), pages 1-11, December.
    13. Singh, Rakhi & Stufken, John, 2024. "Factor selection in screening experiments by aggregation over random models," Computational Statistics & Data Analysis, Elsevier, vol. 194(C).
    14. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    15. Koki Momoki & Takuma Yoshida, 2024. "Hypothesis testing for varying coefficient models in tail index regression," Statistical Papers, Springer, vol. 65(6), pages 3821-3852, August.
    16. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.
    17. Okhrin, Ostap & Ristig, Alexander & Sheen, Jeffrey R. & Trück, Stefan, 2015. "Conditional systemic risk with penalized copula," SFB 649 Discussion Papers 2015-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Michael Hintermüller & Tao Wu, 2014. "A superlinearly convergent R-regularized Newton scheme for variational models with concave sparsity-promoting priors," Computational Optimization and Applications, Springer, vol. 57(1), pages 1-25, January.
    19. Anastasiou, Andreas & Cribben, Ivor & Fryzlewicz, Piotr, 2022. "Cross-covariance isolate detect: a new change-point method for estimating dynamic functional connectivity," LSE Research Online Documents on Economics 112148, London School of Economics and Political Science, LSE Library.
    20. Ni, Xiao & Zhang, Hao Helen & Zhang, Daowen, 2009. "Automatic model selection for partially linear models," Journal of Multivariate Analysis, Elsevier, vol. 100(9), pages 2100-2111, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:68:y:2017:i:3:d:10.1007_s10589-017-9933-6. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.