Markov chain block coordinate descent
Author
Abstract
Suggested Citation
DOI: 10.1007/s10589-019-00140-7
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Brucker, Peter & Drexl, Andreas & Mohring, Rolf & Neumann, Klaus & Pesch, Erwin, 1999. "Resource-constrained project scheduling: Notation, classification, models, and methods," European Journal of Operational Research, Elsevier, vol. 112(1), pages 3-41, January.
- P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
- NESTEROV, Yurii, 2012. "Efficiency of coordinate descent methods on huge-scale optimization problems," LIDAM Reprints CORE 2511, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ion Necoara & Andrei Patrascu, 2014. "A random coordinate descent algorithm for optimization problems with composite objective function and linear coupled constraints," Computational Optimization and Applications, Springer, vol. 57(2), pages 307-337, March.
- Sjur Didrik Flåm, 2019. "Blocks of coordinates, stochastic programming, and markets," Computational Management Science, Springer, vol. 16(1), pages 3-16, February.
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
- Ion Necoara & Yurii Nesterov & François Glineur, 2017.
"Random Block Coordinate Descent Methods for Linearly Constrained Optimization over Networks,"
Journal of Optimization Theory and Applications, Springer, vol. 173(1), pages 227-254, April.
- Ion NECOARA & Yurii NESTEROV & François GLINEUR, 2017. "Random block coordinate descent methods for linearly constrained optimization over networks," LIDAM Reprints CORE 2844, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
- Andrei Patrascu & Ion Necoara, 2015. "Efficient random coordinate descent algorithms for large-scale structured nonconvex optimization," Journal of Global Optimization, Springer, vol. 61(1), pages 19-46, January.
- Kimon Fountoulakis & Rachael Tappenden, 2018. "A flexible coordinate descent method," Computational Optimization and Applications, Springer, vol. 70(2), pages 351-394, June.
- Jin Zhang & Xide Zhu, 2022. "Linear Convergence of Prox-SVRG Method for Separable Non-smooth Convex Optimization Problems under Bounded Metric Subregularity," Journal of Optimization Theory and Applications, Springer, vol. 192(2), pages 564-597, February.
- Zhigang Li & Mingchuan Zhang & Junlong Zhu & Ruijuan Zheng & Qikun Zhang & Qingtao Wu, 2018. "Stochastic Block-Coordinate Gradient Projection Algorithms for Submodular Maximization," Complexity, Hindawi, vol. 2018, pages 1-11, December.
- Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "Multi-block Bregman proximal alternating linearized minimization and its application to orthogonal nonnegative matrix factorization," Computational Optimization and Applications, Springer, vol. 79(3), pages 681-715, July.
- A. Ghaffari-Hadigheh & L. Sinjorgo & R. Sotirov, 2024. "On convergence of a q-random coordinate constrained algorithm for non-convex problems," Journal of Global Optimization, Springer, vol. 90(4), pages 843-868, December.
- Ching-pei Lee & Stephen J. Wright, 2020. "Inexact Variable Metric Stochastic Block-Coordinate Descent for Regularized Optimization," Journal of Optimization Theory and Applications, Springer, vol. 185(1), pages 151-187, April.
- R. Lopes & S. A. Santos & P. J. S. Silva, 2019. "Accelerating block coordinate descent methods with identification strategies," Computational Optimization and Applications, Springer, vol. 72(3), pages 609-640, April.
- Yangyang Xu, 2019. "Asynchronous parallel primal–dual block coordinate update methods for affinely constrained convex programs," Computational Optimization and Applications, Springer, vol. 72(1), pages 87-113, January.
- Mingyi Hong & Tsung-Hui Chang & Xiangfeng Wang & Meisam Razaviyayn & Shiqian Ma & Zhi-Quan Luo, 2020. "A Block Successive Upper-Bound Minimization Method of Multipliers for Linearly Constrained Convex Optimization," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 833-861, August.
- Cassioli, A. & Di Lorenzo, D. & Sciandrone, M., 2013. "On the convergence of inexact block coordinate descent methods for constrained optimization," European Journal of Operational Research, Elsevier, vol. 231(2), pages 274-281.
- Rachael Tappenden & Peter Richtárik & Jacek Gondzio, 2016. "Inexact Coordinate Descent: Complexity and Preconditioning," Journal of Optimization Theory and Applications, Springer, vol. 170(1), pages 144-176, July.
- Asbach, Lasse & Dorndorf, Ulrich & Pesch, Erwin, 2009. "Analysis, modeling and solution of the concrete delivery problem," European Journal of Operational Research, Elsevier, vol. 193(3), pages 820-835, March.
- Wendi Tian & Erik Demeulemeester, 2014. "Railway scheduling reduces the expected project makespan over roadrunner scheduling in a multi-mode project scheduling environment," Annals of Operations Research, Springer, vol. 213(1), pages 271-291, February.
- Byung-Cheon Choi & Changmuk Kang, 2019. "A linear time–cost tradeoff problem with multiple milestones under a comb graph," Journal of Combinatorial Optimization, Springer, vol. 38(2), pages 341-361, August.
- Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
More about this item
Keywords
Block coordinate gradient descent; Markov chain; Markov chain Monte Carlo; Markov decision process; Decentralized optimization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:75:y:2020:i:1:d:10.1007_s10589-019-00140-7. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.