IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v189y2021i3d10.1007_s10957-021-01865-4.html
   My bibliography  Save this article

Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method

Author

Listed:
  • Daoli Zhu

    (Shanghai Jiao Tong University
    The Chinese University of Hong Kong)

  • Sien Deng

    (Northern Illinois University)

  • Minghua Li

    (Chongqing University of Arts and Sciences)

  • Lei Zhao

    (Shanghai Jiao Tong University)

Abstract

In this work, we develop a level-set subdifferential error bound condition with an eye toward convergence rate analysis of a variable Bregman proximal gradient (VBPG) method for a broad class of nonsmooth and nonconvex optimization problems. It is proved that the aforementioned condition guarantees linear convergence of VBPG and is weaker than Kurdyka–Łojasiewicz property, weak metric subregularity, and Bregman proximal error bound. Along the way, we are able to derive a number of verifiable conditions for level-set subdifferential error bounds to hold, and necessary conditions and sufficient conditions for linear convergence relative to a level set for nonsmooth and nonconvex optimization problems. The newly established results not only enable us to show that any accumulation point of the sequence generated by VBPG is at least a critical point of the limiting subdifferential or even a critical point of the proximal subdifferential with a fixed Bregman function in each iteration, but also provide a fresh perspective that allows us to explore inner-connections among many known sufficient conditions for linear convergence of various first-order methods.

Suggested Citation

  • Daoli Zhu & Sien Deng & Minghua Li & Lei Zhao, 2021. "Level-Set Subdifferential Error Bounds and Linear Convergence of Bregman Proximal Gradient Method," Journal of Optimization Theory and Applications, Springer, vol. 189(3), pages 889-918, June.
  • Handle: RePEc:spr:joptap:v:189:y:2021:i:3:d:10.1007_s10957-021-01865-4
    DOI: 10.1007/s10957-021-01865-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-021-01865-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-021-01865-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2014. "Variable Metric Forward–Backward Algorithm for Minimizing the Sum of a Differentiable Function and a Convex Function," Journal of Optimization Theory and Applications, Springer, vol. 162(1), pages 107-132, July.
    2. P. Tseng & S. Yun, 2009. "Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization," Journal of Optimization Theory and Applications, Springer, vol. 140(3), pages 513-535, March.
    3. Wei Peng & Hui Zhang & Xiaoya Zhang, 2019. "Nonconvex Proximal Incremental Aggregated Gradient Method with Linear Convergence," Journal of Optimization Theory and Applications, Springer, vol. 183(1), pages 230-245, October.
    4. Pierre Frankel & Guillaume Garrigos & Juan Peypouquet, 2015. "Splitting Methods with Variable Metric for Kurdyka–Łojasiewicz Functions and General Convergence Rates," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 874-900, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sixuan Bai & Minghua Li & Chengwu Lu & Daoli Zhu & Sien Deng, 2022. "The Equivalence of Three Types of Error Bounds for Weakly and Approximately Convex Functions," Journal of Optimization Theory and Applications, Springer, vol. 194(1), pages 220-245, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Bonettini & M. Prato & S. Rebegoldi, 2018. "A block coordinate variable metric linesearch based proximal gradient method," Computational Optimization and Applications, Springer, vol. 71(1), pages 5-52, September.
    2. Bonettini, S. & Prato, M. & Rebegoldi, S., 2021. "New convergence results for the inexact variable metric forward–backward method," Applied Mathematics and Computation, Elsevier, vol. 392(C).
    3. Silvia Bonettini & Peter Ochs & Marco Prato & Simone Rebegoldi, 2023. "An abstract convergence framework with application to inertial inexact forward–backward methods," Computational Optimization and Applications, Springer, vol. 84(2), pages 319-362, March.
    4. Emilie Chouzenoux & Jean-Christophe Pesquet & Audrey Repetti, 2016. "A block coordinate variable metric forward–backward algorithm," Journal of Global Optimization, Springer, vol. 66(3), pages 457-485, November.
    5. Masoud Ahookhosh & Le Thi Khanh Hien & Nicolas Gillis & Panagiotis Patrinos, 2021. "A Block Inertial Bregman Proximal Algorithm for Nonsmooth Nonconvex Problems with Application to Symmetric Nonnegative Matrix Tri-Factorization," Journal of Optimization Theory and Applications, Springer, vol. 190(1), pages 234-258, July.
    6. Ching-pei Lee & Stephen J. Wright, 2019. "Inexact Successive quadratic approximation for regularized optimization," Computational Optimization and Applications, Springer, vol. 72(3), pages 641-674, April.
    7. Yaohua Hu & Chong Li & Kaiwen Meng & Xiaoqi Yang, 2021. "Linear convergence of inexact descent method and inexact proximal gradient algorithms for lower-order regularization problems," Journal of Global Optimization, Springer, vol. 79(4), pages 853-883, April.
    8. Szilárd Csaba László, 2023. "A Forward–Backward Algorithm With Different Inertial Terms for Structured Non-Convex Minimization Problems," Journal of Optimization Theory and Applications, Springer, vol. 198(1), pages 387-427, July.
    9. Radu Ioan Boţ & Ernö Robert Csetnek & Szilárd Csaba László, 2016. "An inertial forward–backward algorithm for the minimization of the sum of two nonconvex functions," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 3-25, February.
    10. Tianxiang Liu & Akiko Takeda, 2022. "An inexact successive quadratic approximation method for a class of difference-of-convex optimization problems," Computational Optimization and Applications, Springer, vol. 82(1), pages 141-173, May.
    11. Hao Wang & Hao Zeng & Jiashan Wang, 2022. "An extrapolated iteratively reweighted $$\ell _1$$ ℓ 1 method with complexity analysis," Computational Optimization and Applications, Springer, vol. 83(3), pages 967-997, December.
    12. Min Tao & Jiang-Ning Li, 2023. "Error Bound and Isocost Imply Linear Convergence of DCA-Based Algorithms to D-Stationarity," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 205-232, April.
    13. Maryam Yashtini, 2022. "Convergence and rate analysis of a proximal linearized ADMM for nonconvex nonsmooth optimization," Journal of Global Optimization, Springer, vol. 84(4), pages 913-939, December.
    14. Le Thi Khanh Hien & Duy Nhat Phan & Nicolas Gillis, 2022. "Inertial alternating direction method of multipliers for non-convex non-smooth optimization," Computational Optimization and Applications, Springer, vol. 83(1), pages 247-285, September.
    15. J. X. Cruz Neto & P. R. Oliveira & A. Soubeyran & J. C. O. Souza, 2020. "A generalized proximal linearized algorithm for DC functions with application to the optimal size of the firm problem," Annals of Operations Research, Springer, vol. 289(2), pages 313-339, June.
    16. Zehui Jia & Jieru Huang & Xingju Cai, 2021. "Proximal-like incremental aggregated gradient method with Bregman distance in weakly convex optimization problems," Journal of Global Optimization, Springer, vol. 80(4), pages 841-864, August.
    17. Radu Ioan Bot & Dang-Khoa Nguyen, 2020. "The Proximal Alternating Direction Method of Multipliers in the Nonconvex Setting: Convergence Analysis and Rates," Mathematics of Operations Research, INFORMS, vol. 45(2), pages 682-712, May.
    18. Peter Ochs, 2018. "Local Convergence of the Heavy-Ball Method and iPiano for Non-convex Optimization," Journal of Optimization Theory and Applications, Springer, vol. 177(1), pages 153-180, April.
    19. Dewei Zhang & Yin Liu & Sam Davanloo Tajbakhsh, 2022. "A First-Order Optimization Algorithm for Statistical Learning with Hierarchical Sparsity Structure," INFORMS Journal on Computing, INFORMS, vol. 34(2), pages 1126-1140, March.
    20. Liu, Yulan & Bi, Shujun, 2019. "Error bounds for non-polyhedral convex optimization and applications to linear convergence of FDM and PGM," Applied Mathematics and Computation, Elsevier, vol. 358(C), pages 418-435.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:189:y:2021:i:3:d:10.1007_s10957-021-01865-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.