IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v68y2017i3d10.1007_s10589-017-9923-8.html
   My bibliography  Save this article

Markov–Dubins path via optimal control theory

Author

Listed:
  • C. Yalçın Kaya

    (University of South Australia)

Abstract

Markov–Dubins path is the shortest planar curve joining two points with prescribed tangents, with a specified bound on its curvature. Its structure, as proved by Dubins in 1957, nearly 70 years after Markov posed the problem of finding it, is elegantly simple: a selection of at most three arcs are concatenated, each of which is either a circular arc of maximum (prescribed) curvature or a straight line. The Markov–Dubins problem and its variants have since been extensively studied in practical and theoretical settings. A reformulation of the Markov–Dubins problem as an optimal control problem was subsequently studied by various researchers using the Pontryagin maximum principle and additional techniques, to reproduce Dubins’ result. In the present paper, we study the same reformulation, and apply the maximum principle, with new insights, to derive Dubins’ result again. We prove that abnormal control solutions do exist. We characterize these solutions, which were not studied adequately in the literature previously, as a concatenation of at most two circular arcs and show that they are also solutions of the normal problem. Moreover, we prove that any feasible path of the types mentioned in Dubins’ result is a stationary solution, i.e., that it satisfies the Pontryagin maximum principle. We propose a numerical method for computing Markov–Dubins path. We illustrate the theory and the numerical approach by three qualitatively different examples.

Suggested Citation

  • C. Yalçın Kaya, 2017. "Markov–Dubins path via optimal control theory," Computational Optimization and Applications, Springer, vol. 68(3), pages 719-747, December.
  • Handle: RePEc:spr:coopap:v:68:y:2017:i:3:d:10.1007_s10589-017-9923-8
    DOI: 10.1007/s10589-017-9923-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10589-017-9923-8
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10589-017-9923-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Alan Chang & Marcus Brazil & J. Rubinstein & Doreen Thomas, 2012. "Curvature-constrained directional-cost paths in the plane," Journal of Global Optimization, Springer, vol. 53(4), pages 663-681, August.
    2. Nahid Banihashemi & C. Yalçın Kaya, 2013. "Inexact Restoration for Euler Discretization of Box-Constrained Optimal Control Problems," Journal of Optimization Theory and Applications, Springer, vol. 156(3), pages 726-760, March.
    3. Alan Chang & Marcus Brazil & J. Rubinstein & Doreen Thomas, 2015. "Optimal curvature and gradient-constrained directional cost paths in 3-space," Journal of Global Optimization, Springer, vol. 62(3), pages 507-527, July.
    4. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. C. Yalçın Kaya, 2019. "Markov–Dubins interpolating curves," Computational Optimization and Applications, Springer, vol. 73(2), pages 647-677, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Regina S. Burachik & Alexander C. Kalloniatis & C. Yalçın Kaya, 2021. "Sparse Network Optimization for Synchronization," Journal of Optimization Theory and Applications, Springer, vol. 191(1), pages 229-251, October.
    2. C. Yalçın Kaya, 2019. "Markov–Dubins interpolating curves," Computational Optimization and Applications, Springer, vol. 73(2), pages 647-677, June.
    3. Cui, Yunfei & Geng, Zhiqiang & Zhu, Qunxiong & Han, Yongming, 2017. "Review: Multi-objective optimization methods and application in energy saving," Energy, Elsevier, vol. 125(C), pages 681-704.
    4. Nguyen Thi Toan & Le Quang Thuy, 2023. "S-Derivative of the Extremum Multifunction to a Multi-objective Parametric Discrete Optimal Control Problem," Journal of Optimization Theory and Applications, Springer, vol. 196(1), pages 240-265, January.
    5. Bui Trong Kien & Trinh Duy Binh, 2023. "On the second-order optimality conditions for multi-objective optimal control problems with mixed pointwise constraints," Journal of Global Optimization, Springer, vol. 85(1), pages 155-183, January.
    6. C. Kaya & Helmut Maurer, 2014. "A numerical method for nonconvex multi-objective optimal control problems," Computational Optimization and Applications, Springer, vol. 57(3), pages 685-702, April.
    7. Owen Davis & Siavash Radpour, 2022. "Older Workers’ Wages Are Growing—But Not Fast Enough," SCEPA publication series. 2022-02, Schwartz Center for Economic Policy Analysis (SCEPA), The New School.
    8. Andreas Lichtenberger & Joao Paulo Braga & Willi Semmler, 2022. "Green Bonds for the Transition to a Low-Carbon Economy," Econometrics, MDPI, vol. 10(1), pages 1-31, March.
    9. Andreas Lichtenberger & Joao Paulo Braga & Willi Semmler, 2022. "Green Bonds for the Transition to a Low-Carbon Economy," SCEPA working paper series. 2022-02, Schwartz Center for Economic Policy Analysis (SCEPA), The New School.
    10. E. G. Birgin & L. F. Bueno & J. M. Martínez, 2016. "Sequential equality-constrained optimization for nonlinear programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 699-721, December.
    11. Qun Lin & Ryan Loxton & Kok Teo & Yong Wu, 2015. "Optimal control problems with stopping constraints," Journal of Global Optimization, Springer, vol. 63(4), pages 835-861, December.
    12. Stephan Dempe & Gabriele Eichfelder & Jörg Fliege, 2015. "On the effects of combining objectives in multi-objective optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(1), pages 1-18, August.
    13. C. Yalçın Kaya, 2020. "Optimal Control of the Double Integrator with Minimum Total Variation," Journal of Optimization Theory and Applications, Springer, vol. 185(3), pages 966-981, June.
    14. Nguyen Thi Toan & Le Quang Thuy & Nguyen Tuyen & Yi-Bin Xiao, 2021. "Second-order KKT optimality conditions for multiobjective discrete optimal control problems," Journal of Global Optimization, Springer, vol. 79(1), pages 203-231, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:68:y:2017:i:3:d:10.1007_s10589-017-9923-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.