IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v181y2019i1d10.1007_s10957-018-1401-7.html
   My bibliography  Save this article

An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities

Author

Listed:
  • Paul Armand

    (Université de Limoges - Laboratoire XLIM)

  • Ngoc Nguyen Tran

    (Université de Limoges - Laboratoire XLIM)

Abstract

We present a primal-dual augmented Lagrangian method for solving an equality constrained minimization problem, which is able to rapidly detect infeasibility. The method is based on a modification of the algorithm proposed in Armand and Omheni (Optim Methods Softw 32(1):1–21, 2017). A new parameter is introduced to scale the objective function and, in case of infeasibility, to force the convergence of the iterates to an infeasible stationary point. It is shown, under mild assumptions, that whenever the algorithm converges to an infeasible stationary point, the rate of convergence is quadratic. This is a new convergence result for the class of augmented Lagrangian methods. The global convergence of the algorithm is also analyzed. It is also proved that, when the algorithm converges to a stationary point, the properties of the original algorithm are preserved. The numerical experiments show that our new approach is as good as the original one when the algorithm converges to a local minimum, but much more efficient in case of infeasibility.

Suggested Citation

  • Paul Armand & Ngoc Nguyen Tran, 2019. "An Augmented Lagrangian Method for Equality Constrained Optimization with Rapid Infeasibility Detection Capabilities," Journal of Optimization Theory and Applications, Springer, vol. 181(1), pages 197-215, April.
  • Handle: RePEc:spr:joptap:v:181:y:2019:i:1:d:10.1007_s10957-018-1401-7
    DOI: 10.1007/s10957-018-1401-7
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-018-1401-7
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-018-1401-7?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul Armand & Joël Benoist & Riadh Omheni & Vincent Pateloup, 2014. "Study of a primal-dual algorithm for equality constrained minimization," Computational Optimization and Applications, Springer, vol. 59(3), pages 405-433, December.
    2. M. Gonçalves & J. Melo & L. Prudente, 2015. "Augmented Lagrangian methods for nonlinear programming with possible infeasibility," Journal of Global Optimization, Springer, vol. 63(2), pages 297-318, October.
    3. E. Birgin & J. Martínez & L. Prudente, 2014. "Augmented Lagrangians with possible infeasibility and finite termination for global nonlinear programming," Journal of Global Optimization, Springer, vol. 58(2), pages 207-242, February.
    4. Paul Armand & Riadh Omheni, 2017. "A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 523-547, May.
    5. E. G. Birgin & L. F. Bueno & J. M. Martínez, 2016. "Sequential equality-constrained optimization for nonlinear programming," Computational Optimization and Applications, Springer, vol. 65(3), pages 699-721, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nélida Echebest & María Daniela Sánchez & María Laura Schuverdt, 2016. "Convergence Results of an Augmented Lagrangian Method Using the Exponential Penalty Function," Journal of Optimization Theory and Applications, Springer, vol. 168(1), pages 92-108, January.
    2. E. G. Birgin & J. M. Martínez, 2016. "On the application of an Augmented Lagrangian algorithm to some portfolio problems," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 4(1), pages 79-92, February.
    3. Paul Armand & Ngoc Nguyen Tran, 2021. "Local Convergence Analysis of a Primal–Dual Method for Bound-Constrained Optimization Without SOSC," Journal of Optimization Theory and Applications, Springer, vol. 189(1), pages 96-116, April.
    4. Chao Min & Feifei Fan & Zhaozhong Yang & Xiaogang Li, 2019. "An Iterative Algorithm for the Nonlinear MC 2 Model with Variational Inequality Method," Mathematics, MDPI, vol. 7(6), pages 1-13, June.
    5. Renke Kuhlmann & Christof Büskens, 2018. "A primal–dual augmented Lagrangian penalty-interior-point filter line search algorithm," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(3), pages 451-483, June.
    6. Biao Qu & Changyu Wang & Naihua Xiu, 2017. "Analysis on Newton projection method for the split feasibility problem," Computational Optimization and Applications, Springer, vol. 67(1), pages 175-199, May.
    7. Spyridon Pougkakiotis & Jacek Gondzio, 2021. "An interior point-proximal method of multipliers for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 78(2), pages 307-351, March.
    8. Paul Armand & Riadh Omheni, 2017. "A Mixed Logarithmic Barrier-Augmented Lagrangian Method for Nonlinear Optimization," Journal of Optimization Theory and Applications, Springer, vol. 173(2), pages 523-547, May.
    9. Spyridon Pougkakiotis & Jacek Gondzio, 2019. "Dynamic Non-diagonal Regularization in Interior Point Methods for Linear and Convex Quadratic Programming," Journal of Optimization Theory and Applications, Springer, vol. 181(3), pages 905-945, June.
    10. Luís Felipe Bueno & Gabriel Haeser & Luiz-Rafael Santos, 2020. "Towards an efficient augmented Lagrangian method for convex quadratic programming," Computational Optimization and Applications, Springer, vol. 76(3), pages 767-800, July.
    11. Jacek Gondzio & Spyridon Pougkakiotis & John W. Pearson, 2022. "General-purpose preconditioning for regularized interior point methods," Computational Optimization and Applications, Springer, vol. 83(3), pages 727-757, December.
    12. Dominique Orban & Abel Soares Siqueira, 2020. "A regularization method for constrained nonlinear least squares," Computational Optimization and Applications, Springer, vol. 76(3), pages 961-989, July.
    13. M. Joseane F. G. Macêdo & Elizabeth W. Karas & M. Fernanda P. Costa & Ana Maria A. C. Rocha, 2020. "Filter-based stochastic algorithm for global optimization," Journal of Global Optimization, Springer, vol. 77(4), pages 777-805, August.
    14. E. G. Birgin & G. Haeser & A. Ramos, 2018. "Augmented Lagrangians with constrained subproblems and convergence to second-order stationary points," Computational Optimization and Applications, Springer, vol. 69(1), pages 51-75, January.
    15. Nitish Das & P. Aruna Priya, 2019. "A Gradient-Based Interior-Point Method to Solve the Many-to-Many Assignment Problems," Complexity, Hindawi, vol. 2019, pages 1-13, July.
    16. Paul Armand & Isaï Lankoandé, 2017. "An inexact proximal regularization method for unconstrained optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 85(1), pages 43-59, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:181:y:2019:i:1:d:10.1007_s10957-018-1401-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.