IDEAS home Printed from https://ideas.repec.org/a/spr/coopap/v63y2016i1p121-142.html
   My bibliography  Save this article

Exact line and plane search for tensor optimization

Author

Listed:
  • Laurent Sorber
  • Ignat Domanov
  • Marc Barel
  • Lieven Lathauwer

Abstract

Line and plane searches are used as accelerators and globalization strategies in many optimization algorithms. We introduce a class of optimization problems called tensor optimization, which comprises applications ranging from tensor decompositions to least squares support tensor machines. We develop algorithms to efficiently compute the global minimizers of their line and plane search subproblems. Furthermore, we introduce scaled line and plane search, which compute an optimal scaling of the solution simultaneously with the optimal line or plane search step, and show that this scaling can be computed at almost no additional cost. Obtaining the global minimizers of (scaled) line and plane search problems often requires solving a bivariate or polyanalytic polynomial system. We show how to compute the isolated real solutions of bivariate polynomial systems and the isolated complex solutions of polyanalytic polynomial systems using a single generalized eigenvalue decomposition. Finally, we apply block term decompositions to the problem of blind multi-user detection-estimation in DS-CDMA communication to demonstrate that exact line and plane search can significantly reduce computation time of the workhorse tensor decomposition algorithm alternating least squares. Copyright Springer Science+Business Media New York 2016

Suggested Citation

  • Laurent Sorber & Ignat Domanov & Marc Barel & Lieven Lathauwer, 2016. "Exact line and plane search for tensor optimization," Computational Optimization and Applications, Springer, vol. 63(1), pages 121-142, January.
  • Handle: RePEc:spr:coopap:v:63:y:2016:i:1:p:121-142
    DOI: 10.1007/s10589-015-9761-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s10589-015-9761-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s10589-015-9761-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Carroll & Jih-Jie Chang, 1970. "Analysis of individual differences in multidimensional scaling via an n-way generalization of “Eckart-Young” decomposition," Psychometrika, Springer;The Psychometric Society, vol. 35(3), pages 283-319, September.
    2. Ledyard Tucker, 1966. "Some mathematical notes on three-mode factor analysis," Psychometrika, Springer;The Psychometric Society, vol. 31(3), pages 279-311, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuning Yang, 2023. "On global convergence of alternating least squares for tensor approximation," Computational Optimization and Applications, Springer, vol. 84(2), pages 509-529, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mariela González-Narváez & María José Fernández-Gómez & Susana Mendes & José-Luis Molina & Omar Ruiz-Barzola & Purificación Galindo-Villardón, 2021. "Study of Temporal Variations in Species–Environment Association through an Innovative Multivariate Method: MixSTATICO," Sustainability, MDPI, vol. 13(11), pages 1-25, May.
    2. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    3. Yoshio Takane & Forrest Young & Jan Leeuw, 1977. "Nonmetric individual differences multidimensional scaling: An alternating least squares method with optimal scaling features," Psychometrika, Springer;The Psychometric Society, vol. 42(1), pages 7-67, March.
    4. Giuseppe Brandi & Ruggero Gramatica & Tiziana Di Matteo, 2019. "Unveil stock correlation via a new tensor-based decomposition method," Papers 1911.06126, arXiv.org, revised Apr 2020.
    5. Namgil Lee & Jong-Min Kim, 2018. "Block tensor train decomposition for missing data estimation," Statistical Papers, Springer, vol. 59(4), pages 1283-1305, December.
    6. Zhang, Shuang & Han, Le, 2023. "Robust tensor recovery with nonconvex and nonsmooth regularization," Applied Mathematics and Computation, Elsevier, vol. 438(C).
    7. Michel Velden & Tammo Bijmolt, 2006. "Generalized canonical correlation analysis of matrices with missing rows: a simulation study," Psychometrika, Springer;The Psychometric Society, vol. 71(2), pages 323-331, June.
    8. Paolo Giordani & Roberto Rocci & Giuseppe Bove, 2020. "Factor Uniqueness of the Structural Parafac Model," Psychometrika, Springer;The Psychometric Society, vol. 85(3), pages 555-574, September.
    9. Alwin Stegeman & Tam Lam, 2014. "Three-Mode Factor Analysis by Means of Candecomp/Parafac," Psychometrika, Springer;The Psychometric Society, vol. 79(3), pages 426-443, July.
    10. Chen Ling & Gaohang Yu & Liqun Qi & Yanwei Xu, 2021. "T-product factorization method for internet traffic data completion with spatio-temporal regularization," Computational Optimization and Applications, Springer, vol. 80(3), pages 883-913, December.
    11. Zhang, Tonglin, 2020. "CP decomposition and weighted clique problem," Statistics & Probability Letters, Elsevier, vol. 161(C).
    12. Timmerman, Marieke E. & Kiers, Henk A. L., 2002. "Three-way component analysis with smoothness constraints," Computational Statistics & Data Analysis, Elsevier, vol. 40(3), pages 447-470, September.
    13. Richard Harshman & Margaret Lundy, 1996. "Uniqueness proof for a family of models sharing features of Tucker's three-mode factor analysis and PARAFAC/candecomp," Psychometrika, Springer;The Psychometric Society, vol. 61(1), pages 133-154, March.
    14. Andersson, Claus A. & Henrion, Rene, 1999. "A general algorithm for obtaining simple structure of core arrays in N-way PCA with application to fluorometric data," Computational Statistics & Data Analysis, Elsevier, vol. 31(3), pages 255-278, September.
    15. Rubinstein, Alexander & Slutskin, Lev, 2018. "«Multiway data analysis» and the general problem of journals’ ranking," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 50, pages 90-113.
    16. Carlos Martin-Barreiro & John A. Ramirez-Figueroa & Ana B. Nieto-Librero & Víctor Leiva & Ana Martin-Casado & M. Purificación Galindo-Villardón, 2021. "A New Algorithm for Computing Disjoint Orthogonal Components in the Three-Way Tucker Model," Mathematics, MDPI, vol. 9(3), pages 1-22, January.
    17. Giudici, Paolo & Huang, Bihong & Spelta, Alessandro, 2019. "Trade networks and economic fluctuations in Asian countries," Economic Systems, Elsevier, vol. 43(2), pages 1-1.
    18. Jacques Bénasséni & Mohammed Bennani Dosse, 2012. "Analyzing multiset data by the Power STATIS-ACT method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 6(1), pages 49-65, April.
    19. Ji Yeh Choi & Heungsun Hwang & Marieke E. Timmerman, 2018. "Functional Parallel Factor Analysis for Functions of One- and Two-dimensional Arguments," Psychometrika, Springer;The Psychometric Society, vol. 83(1), pages 1-20, March.
    20. Violetta Simonacci & Michele Gallo, 2019. "Detecting Public Social Spending Patterns in Italy Using a Three-Way Relative Variation Approach," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 146(1), pages 205-219, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:coopap:v:63:y:2016:i:1:p:121-142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.