IDEAS home Printed from https://ideas.repec.org/a/spr/joptap/v203y2024i2d10.1007_s10957-024-02522-2.html
   My bibliography  Save this article

Isolated Calmness of Perturbation Mappings and Superlinear Convergence of Newton-Type Methods

Author

Listed:
  • Matúš Benko

    (Johann Radon Institute for Computational and Applied Mathematics)

  • Patrick Mehlitz

    (Philipps-Universität Marburg)

Abstract

In this paper, we characterize Lipschitzian properties of different multiplier-free and multiplier-dependent perturbation mappings associated with the stationarity system of a so-called generalized nonlinear program popularized by Rockafellar. Special emphasis is put on the investigation of the isolated calmness property at and around a point. The latter is decisive for the locally fast convergence of the so-called semismooth* Newton-type method by Gfrerer and Outrata. Our central result is the characterization of the isolated calmness at a point of a multiplier-free perturbation mapping via a combination of an explicit condition and a rather mild assumption, automatically satisfied e.g. for standard nonlinear programs. Isolated calmness around a point is characterized analogously by a combination of two stronger conditions. These findings are then related to so-called criticality of Lagrange multipliers, as introduced by Izmailov and extended to generalized nonlinear programming by Mordukhovich and Sarabi. We derive a new sufficient condition (a characterization for some problem classes) of nonexistence of critical multipliers, which has been also used in the literature as an assumption to guarantee local fast convergence of Newton-, SQP-, or multiplier-penalty-type methods. The obtained insights about critical multipliers seem to complement the vast literature on the topic.

Suggested Citation

  • Matúš Benko & Patrick Mehlitz, 2024. "Isolated Calmness of Perturbation Mappings and Superlinear Convergence of Newton-Type Methods," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1587-1621, November.
  • Handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02522-2
    DOI: 10.1007/s10957-024-02522-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10957-024-02522-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10957-024-02522-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matúš Benko & R. Tyrrell Rockafellar, 2024. "Primal–Dual Stability in Local Optimality," Journal of Optimization Theory and Applications, Springer, vol. 203(2), pages 1325-1354, November.
    2. A. Izmailov & A. Kurennoy & M. Solodov, 2015. "Local convergence of the method of multipliers for variational and optimization problems under the noncriticality assumption," Computational Optimization and Applications, Springer, vol. 60(1), pages 111-140, January.
    3. Jong-Shi Pang, 1990. "Newton's Method for B-Differentiable Equations," Mathematics of Operations Research, INFORMS, vol. 15(2), pages 311-341, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. H. Xu & B. M. Glover, 1997. "New Version of the Newton Method for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 395-415, May.
    2. Chungen Shen & Lei-Hong Zhang & Wei Liu, 2016. "A stabilized filter SQP algorithm for nonlinear programming," Journal of Global Optimization, Springer, vol. 65(4), pages 677-708, August.
    3. A. F. Izmailov & M. V. Solodov, 2022. "Perturbed Augmented Lagrangian Method Framework with Applications to Proximal and Smoothed Variants," Journal of Optimization Theory and Applications, Springer, vol. 193(1), pages 491-522, June.
    4. Jong-Shi Pang & Defeng Sun & Jie Sun, 2003. "Semismooth Homeomorphisms and Strong Stability of Semidefinite and Lorentz Complementarity Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 39-63, February.
    5. Jean-Pierre Dussault & Mathieu Frappier & Jean Charles Gilbert, 2019. "A lower bound on the iterative complexity of the Harker and Pang globalization technique of the Newton-min algorithm for solving the linear complementarity problem," EURO Journal on Computational Optimization, Springer;EURO - The Association of European Operational Research Societies, vol. 7(4), pages 359-380, December.
    6. Zhang, Xiang & Li, Lingfei & Zhang, Gongqiu, 2021. "Pricing American drawdown options under Markov models," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1188-1205.
    7. Nguyen T. V. Hang & Boris S. Mordukhovich & M. Ebrahim Sarabi, 2022. "Augmented Lagrangian method for second-order cone programs under second-order sufficiency," Journal of Global Optimization, Springer, vol. 82(1), pages 51-81, January.
    8. H. Xu & X. W. Chang, 1997. "Approximate Newton Methods for Nonsmooth Equations," Journal of Optimization Theory and Applications, Springer, vol. 93(2), pages 373-394, May.
    9. Pablos, Blanca & Gerdts, Matthias, 2021. "Substructure exploitation of a nonsmooth Newton method for large-scale optimal control problems with full discretization," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 641-658.
    10. Lorenzo Stella & Andreas Themelis & Panagiotis Patrinos, 2017. "Forward–backward quasi-Newton methods for nonsmooth optimization problems," Computational Optimization and Applications, Springer, vol. 67(3), pages 443-487, July.
    11. L. W. Zhang & Z. Q. Xia, 2001. "Newton-Type Methods for Quasidifferentiable Equations," Journal of Optimization Theory and Applications, Springer, vol. 108(2), pages 439-456, February.
    12. Michael Patriksson, 2004. "Sensitivity Analysis of Traffic Equilibria," Transportation Science, INFORMS, vol. 38(3), pages 258-281, August.
    13. J. H. Wu, 1998. "Long-Step Primal Path-Following Algorithm for Monotone Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 99(2), pages 509-531, November.
    14. D. H. Li & N. Yamashita & M. Fukushima, 2001. "Nonsmooth Equation Based BFGS Method for Solving KKT Systems in Mathematical Programming," Journal of Optimization Theory and Applications, Springer, vol. 109(1), pages 123-167, April.
    15. Long, Qiang & Wu, Changzhi & Wang, Xiangyu, 2015. "A system of nonsmooth equations solver based upon subgradient method," Applied Mathematics and Computation, Elsevier, vol. 251(C), pages 284-299.
    16. Shenglong Hu & Guoyin Li, 2021. "$${\text {B}}$$ B -subdifferentials of the projection onto the matrix simplex," Computational Optimization and Applications, Springer, vol. 80(3), pages 915-941, December.
    17. Roman Sznajder & M. Seetharama Gowda, 1998. "Nondegeneracy Concepts for Zeros of Piecewise Smooth Functions," Mathematics of Operations Research, INFORMS, vol. 23(1), pages 221-238, February.
    18. J. M. Peng, 1997. "Global Method for Monotone Variational Inequality Problems with Inequality Constraints," Journal of Optimization Theory and Applications, Springer, vol. 95(2), pages 419-430, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:joptap:v:203:y:2024:i:2:d:10.1007_s10957-024-02522-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.