IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v312y2022i1d10.1007_s10479-021-04258-y.html
   My bibliography  Save this article

Reliability and optimal release time analysis for multi up-gradation software with imperfect debugging and varied testing coverage under the effect of random field environments

Author

Listed:
  • Subhashis Chatterjee

    (IIT(ISM) Dhanbad)

  • Deepjyoti Saha

    (IIT(ISM) Dhanbad)

  • Akhilesh Sharma

    (GSQAD/SRG/SAC-ISRO)

  • Yogesh Verma

    (GSQAD/SRG/SAC-ISRO)

Abstract

Due to change requests for up-gradation of adding new features, software organizations always develop new versions of the software by adding new features and improving the existing software. Various software reliability growth models have been proposed considering realistic issue which affects the reliability growth of software. Testing coverage is a crucial realistic issue that influences the fault detection and correction process. The difficulty level for removing different faults is different, same kind of testing coverage function can’t capture the fault detection process for all types of faults. Also, there exist random effects in the field environment due to the change between the testing environment and the operational environment. This randomness also affects the reliability growth of software. In this paper, a software reliability growth model has been proposed considering imperfect debugging, faults removal proportionality, two types of testing coverage function in the presence of random effect of the testing environment. Here different categories of faults have been considered. Though reliability is an important issue for software professionals, they are worried about the optimal release of software at an optimal cost. Considering the testing cost and debugging cost random, a cost model has been proposed for release time analysis.

Suggested Citation

  • Subhashis Chatterjee & Deepjyoti Saha & Akhilesh Sharma & Yogesh Verma, 2022. "Reliability and optimal release time analysis for multi up-gradation software with imperfect debugging and varied testing coverage under the effect of random field environments," Annals of Operations Research, Springer, vol. 312(1), pages 65-85, May.
  • Handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-021-04258-y
    DOI: 10.1007/s10479-021-04258-y
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-021-04258-y
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-021-04258-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Subhashis Chatterjee & Shobhit Nigam & Jeetendra Bahadur Singh & Lakshmi Narayan Upadhyaya, 2012. "Effect of change point and imperfect debugging in software reliability and its optimal release policy," Mathematical and Computer Modelling of Dynamical Systems, Taylor & Francis Journals, vol. 18(5), pages 539-551, March.
    2. Pham, Hoang & Zhang, Xuemei, 2003. "NHPP software reliability and cost models with testing coverage," European Journal of Operational Research, Elsevier, vol. 145(2), pages 443-454, March.
    3. P.K. Kapur & Hoang Pham & A. Gupta & P.C. Jha, 2011. "Software Reliability Assessment with OR Applications," Springer Series in Reliability Engineering, Springer, number 978-0-85729-204-9, March.
    4. Mengmeng Zhu & Hoang Pham, 2018. "A multi-release software reliability modeling for open source software incorporating dependent fault detection process," Annals of Operations Research, Springer, vol. 269(1), pages 773-790, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vibha Verma & Sameer Anand & P. K. Kapur & Anu G. Aggarwal, 2022. "Unified framework to assess software reliability and determine optimal release time in presence of fault reduction factor, error generation and fault removal efficiency," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(5), pages 2429-2441, October.
    2. Subhashis Chatterjee & Ankur Shukla, 2016. "Change point–based software reliability model under imperfect debugging with revised concept of fault dependency," Journal of Risk and Reliability, , vol. 230(6), pages 579-597, December.
    3. Avinash K. Shrivastava & Vivek Kumar & P. K. Kapur & Ompal Singh, 0. "Software release and testing stop time decision with change point," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    4. P. K. Kapur & Saurabh Panwar & Ompal Singh & Vivek Kumar, 2022. "Joint optimization of software time-to-market and testing duration using multi-attribute utility theory," Annals of Operations Research, Springer, vol. 312(1), pages 305-332, May.
    5. Subhashis Chatterjee & Ankur Shukla & Hoang Pham, 2019. "Modeling and analysis of software fault detectability and removability with time variant fault exposure ratio, fault removal efficiency, and change point," Journal of Risk and Reliability, , vol. 233(2), pages 246-256, April.
    6. Viral Gupta & P. K. Kapur & Deepak Kumar, 2019. "Prioritizing and Optimizing Disaster Recovery Solution using Analytic Network Process and Multi Attribute Utility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(01), pages 171-207, January.
    7. Kwang Yoon Song & In Hong Chang & Hoang Pham, 2019. "A Testing Coverage Model Based on NHPP Software Reliability Considering the Software Operating Environment and the Sensitivity Analysis," Mathematics, MDPI, vol. 7(5), pages 1-21, May.
    8. Adarsh Anand & Mohini Agarwal & Gunjan Bansal & A. H. S. Garmabaki, 2016. "Studying product diffusion based on market coverage," Journal of Marketing Analytics, Palgrave Macmillan, vol. 4(4), pages 135-146, December.
    9. Yeh, Wei-Chang, 2017. "Evaluation of the one-to-all-target-subsets reliability of a novel deterioration-effect acyclic multi-state information network," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 132-137.
    10. Hirose, Hideo, 2012. "Estimation of the number of failures in the Weibull model using the ordinary differential equation," European Journal of Operational Research, Elsevier, vol. 223(3), pages 722-731.
    11. Ritu Bibyan & Sameer Anand & Anu G. Aggarwal & Abhishek Tandon, 2023. "Multi-release testing coverage-based SRGM considering error generation and change-point incorporating the random effect," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 14(5), pages 1877-1887, October.
    12. Avinash K. Shrivastava & Armaan Singh Ahluwalia & P. K. Kapur, 0. "On interdisciplinarity between product adoption and vulnerability discovery modeling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 0, pages 1-12.
    13. Yoshinobu Tamura & Shigeru Yamada, 2022. "Prototype of 3D Reliability Assessment Tool Based on Deep Learning for Edge OSS Computing," Mathematics, MDPI, vol. 10(9), pages 1-20, May.
    14. Yoshinobu Tamura & Shigeru Yamada, 2022. "Maintenance effort management based on double jump diffusion model for OSS project," Annals of Operations Research, Springer, vol. 312(1), pages 411-426, May.
    15. Ranjan Kumar & Subhash Kumar & Sanjay K. Tiwari, 2019. "A study of software reliability on big data open source software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(2), pages 242-250, April.
    16. Misbah Anjum & Vernika Agarwal & P. K. Kapur & Sunil Kumar Khatri, 2020. "Two-phase methodology for prioritization and utility assessment of software vulnerabilities," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(2), pages 289-300, July.
    17. Da Hye Lee & In Hong Chang & Hoang Pham, 2020. "Software Reliability Model with Dependent Failures and SPRT," Mathematics, MDPI, vol. 8(8), pages 1-14, August.
    18. Kamlesh Kumar Raghuvanshi & Arun Agarwal & Khushboo Jain & V. B. Singh, 2022. "A generalized prediction model for improving software reliability using time-series modelling," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(3), pages 1309-1320, June.
    19. Anshul Tickoo & P. K. Kapur & A. K. Shrivastava & Sunil K. Khatri, 2016. "Testing effort based modeling to determine optimal release and patching time of software," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 7(4), pages 427-434, December.
    20. Ashish Kumar & Monika Saini & Dinesh Kumar Saini & Nikhilesh Badiwal, 2021. "Cyber physical systems-reliability modelling: critical perspective and its impact," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(6), pages 1334-1347, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:312:y:2022:i:1:d:10.1007_s10479-021-04258-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.