IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v10y2021i1p60-d710862.html
   My bibliography  Save this article

Software Reliability Modeling Incorporating Fault Detection and Fault Correction Processes with Testing Coverage and Fault Amount Dependency

Author

Listed:
  • Qiuying Li

    (School of Reliability & Systems Engineering, Beihang University, Beijing 100191, China
    National Key Laboratory of Science & Technology on Reliability & Environmental Engineering, Beijing 100191, China)

  • Hoang Pham

    (Department of Industrial & Systems Engineering, Rutgers University, Piscataway, NJ 08854, USA)

Abstract

This paper presents a general testing coverage software reliability modeling framework that covers imperfect debugging and considers not only fault detection processes (FDP) but also fault correction processes (FCP). Numerous software reliability growth models have evaluated the reliability of software over the last few decades, but most of them attached importance to modeling the fault detection process rather than modeling the fault correction process. Previous studies analyzed the time dependency between the fault detection and correction processes and modeled the fault correction process as a delayed detection process with a random or deterministic time delay. We study the quantitative dependency between dual processes from the viewpoint of fault amount dependency instead of time dependency, then propose a generalized modeling framework along with imperfect debugging and testing coverage. New models are derived by adopting different testing coverage functions. We compared the performance of these proposed models with existing models under the context of two kinds of failure data, one of which only includes observations of faults detected, and the other includes not only fault detection but also fault correction data. Different parameter estimation methods and performance comparison criteria are presented according to the characteristics of different kinds of datasets. No matter what kind of data, the comparison results reveal that the proposed models generally give improved descriptive and predictive performance than existing models.

Suggested Citation

  • Qiuying Li & Hoang Pham, 2021. "Software Reliability Modeling Incorporating Fault Detection and Fault Correction Processes with Testing Coverage and Fault Amount Dependency," Mathematics, MDPI, vol. 10(1), pages 1-22, December.
  • Handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:60-:d:710862
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/10/1/60/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/10/1/60/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Lujia Wang & Qingpei Hu & Jian Liu, 2016. "Software reliability growth modeling and analysis with dual fault detection and correction processes," IISE Transactions, Taylor & Francis Journals, vol. 48(4), pages 359-370, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Umashankar Samal & Ajay Kumar, 2024. "A software reliability model incorporating fault removal efficiency and it’s release policy," Computational Statistics, Springer, vol. 39(6), pages 3137-3155, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qing Tian & Chih-Chiang Fang & Chun-Wu Yeh, 2022. "Software Release Assessment under Multiple Alternatives with Consideration of Debuggers’ Learning Rate and Imperfect Debugging Environment," Mathematics, MDPI, vol. 10(10), pages 1-24, May.
    2. Li, Dongmin & Hu, Qingpei & Wang, Lujia & Yu, Dan, 2019. "Statistical inference for Mt/G/Infinity queueing systems under incomplete observations," European Journal of Operational Research, Elsevier, vol. 279(3), pages 882-901.
    3. Feipeng Wang & Diana Filipa Araújo & Yan-Fu Li, 2023. "Reliability assessment of autonomous vehicles based on the safety control structure," Journal of Risk and Reliability, , vol. 237(2), pages 389-404, April.
    4. Kwang Yoon Song & Youn Su Kim & Hoang Pham & In Hong Chang, 2024. "A Software Reliability Model Considering a Scale Parameter of the Uncertainty and a New Criterion," Mathematics, MDPI, vol. 12(11), pages 1-14, May.
    5. Umashankar Samal & Ajay Kumar, 2024. "A software reliability model incorporating fault removal efficiency and it’s release policy," Computational Statistics, Springer, vol. 39(6), pages 3137-3155, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:10:y:2021:i:1:p:60-:d:710862. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.