A Monte Carlo permutation procedure for testing variance components in generalized linear regression models
Author
Abstract
Suggested Citation
DOI: 10.1007/s00180-023-01403-y
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Yoonsang Kim & Young-Ku Choi & Sherry Emery, 2013. "Logistic Regression With Multiple Random Effects: A Simulation Study of Estimation Methods and Statistical Packages," The American Statistician, Taylor & Francis Journals, vol. 67(3), pages 171-182, August.
- Juvêncio Nobre & Julio Singer & Pranab Sen, 2013. "U-tests for variance components in linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 580-605, November.
- Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
- Oliver E. Lee & Thomas M. Braun, 2012. "Permutation Tests for Random Effects in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 68(2), pages 486-493, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
- Chen, Fei & Li, Zaixing & Shi, Lei & Zhu, Lixing, 2015. "Inference for mixed models of ANOVA type with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 382-401.
- Li, Zaixing, 2015. "A residual-based test for variance components in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 73-78.
- Pini, Alessia & Sørensen, Helle & Tolver, Anders & Vantini, Simone, 2023. "Local inference for functional linear mixed models," Computational Statistics & Data Analysis, Elsevier, vol. 181(C).
- Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
- Stefano Bonnini & Michela Borghesi, 2022. "Relationship between Mental Health and Socio-Economic, Demographic and Environmental Factors in the COVID-19 Lockdown Period—A Multivariate Regression Analysis," Mathematics, MDPI, vol. 10(18), pages 1-15, September.
- Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
- Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015.
"Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines,"
Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
- Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2013. "Estimation and inference for varying-coeffcient models with nonstationary regressors using penalized splines," SFB 649 Discussion Papers 2013-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- Bonnini, S. & Borghesi, M. & Giacalone, M., 2024. "Semi-parametric approach for modelling overdispersed count data with application to Industry 4.0," Socio-Economic Planning Sciences, Elsevier, vol. 95(C).
- Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).
- Philip T. Reiss & R. Todd Ogden, 2010. "Functional Generalized Linear Models with Images as Predictors," Biometrics, The International Biometric Society, vol. 66(1), pages 61-69, March.
- Alexander Robitzsch, 2021. "A Comprehensive Simulation Study of Estimation Methods for the Rasch Model," Stats, MDPI, vol. 4(4), pages 1-23, October.
- Braun, Julia & Sabanés Bové, Daniel & Held, Leonhard, 2014. "Choice of generalized linear mixed models using predictive crossvalidation," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 190-202.
- Andrada Ivanescu & Ana-Maria Staicu & Fabian Scheipl & Sonja Greven, 2015. "Penalized function-on-function regression," Computational Statistics, Springer, vol. 30(2), pages 539-568, June.
- Cedric H. A. Koffi & Viani Biatat Djeundje & Olivier Menoukeu Pamen, 2024. "Impact of social factors on loan delinquency in microfinance," Papers 2410.13100, arXiv.org.
- Bei Wang & Jeffrey R. Wilson, 2018. "Comparative GMM and GQL logistic regression models on hierarchical data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 45(3), pages 409-425, February.
- Tang, Min & Slud, Eric V. & Pfeiffer, Ruth M., 2014. "Goodness of fit tests for linear mixed models," Journal of Multivariate Analysis, Elsevier, vol. 130(C), pages 176-193.
- Sonja Greven & Fabian Scheipl, 2016. "Comment," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 111(516), pages 1568-1573, October.
- Kruse, René-Marcel & Silbersdorff, Alexander & Säfken, Benjamin, 2022. "Model averaging for linear mixed models via augmented Lagrangian," Computational Statistics & Data Analysis, Elsevier, vol. 167(C).
- Takumi Saegusa & Chongzhi Di & Ying Qing Chen, 2014. "Hypothesis testing for an extended cox model with time-varying coefficients," Biometrics, The International Biometric Society, vol. 70(3), pages 619-628, September.
More about this item
Keywords
Analysis of variance; Permutation; Exponential family; Linearization; Variance components; Non-normal data;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:39:y:2024:i:5:d:10.1007_s00180-023-01403-y. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.