IDEAS home Printed from https://ideas.repec.org/a/eee/stapro/v98y2015icp73-78.html
   My bibliography  Save this article

A residual-based test for variance components in linear mixed models

Author

Listed:
  • Li, Zaixing

Abstract

In the paper, a residual-based test is developed for variance components in LMM. It is distribution-free, tractable, consistent and suitable for clustered designs and crossed designs. Numerical analysis is also conducted.

Suggested Citation

  • Li, Zaixing, 2015. "A residual-based test for variance components in linear mixed models," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 73-78.
  • Handle: RePEc:eee:stapro:v:98:y:2015:i:c:p:73-78
    DOI: 10.1016/j.spl.2014.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167715214004131
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.spl.2014.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juvêncio Nobre & Julio Singer & Pranab Sen, 2013. "U-tests for variance components in linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 580-605, November.
    2. Zaixing Li & Fei Chen & Lixing Zhu, 2014. "Variance Components Testing in ANOVA-Type Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 482-496, June.
    3. Cibele Russo & Reiko Aoki & Gilberto Paula, 2012. "Assessment of variance components in nonlinear mixed-effects elliptical models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 519-545, September.
    4. Zhu, Zhongyi & Fung, Wing K., 2004. "Variance component testing in semiparametric mixed models," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 107-118, October.
    5. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457, September.
    6. Ciprian M. Crainiceanu & David Ruppert, 2004. "Likelihood ratio tests in linear mixed models with one variance component," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(1), pages 165-185, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Fei & Li, Zaixing & Shi, Lei & Zhu, Lixing, 2015. "Inference for mixed models of ANOVA type with high-dimensional data," Journal of Multivariate Analysis, Elsevier, vol. 133(C), pages 382-401.
    2. Zaixing Li, 2017. "Inference of nonlinear mixed models for clustered data under moment conditions," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(4), pages 759-781, December.
    3. Zaixing Li & Fei Chen & Lixing Zhu, 2014. "Variance Components Testing in ANOVA-Type Mixed Models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(2), pages 482-496, June.
    4. Yahia S. El-Horbaty, 2024. "A Monte Carlo permutation procedure for testing variance components in generalized linear regression models," Computational Statistics, Springer, vol. 39(5), pages 2605-2621, July.
    5. Imori, Shinpei & Rosen, Dietrich von, 2015. "Covariance components selection in high-dimensional growth curve model with random coefficients," Journal of Multivariate Analysis, Elsevier, vol. 136(C), pages 86-94.
    6. Zaixing Li & Lixing Zhu, 2010. "On Variance Components in Semiparametric Mixed Models for Longitudinal Data," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 37(3), pages 442-457, September.
    7. Juvêncio Nobre & Julio Singer & Pranab Sen, 2013. "U-tests for variance components in linear mixed models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 22(4), pages 580-605, November.
    8. Ana-Maria Staicu & Yingxing Li & Ciprian M. Crainiceanu & David Ruppert, 2014. "Likelihood Ratio Tests for Dependent Data with Applications to Longitudinal and Functional Data Analysis," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 41(4), pages 932-949, December.
    9. Zanin, Luca & Marra, Giampiero, 2012. "Assessing the functional relationship between CO2 emissions and economic development using an additive mixed model approach," Economic Modelling, Elsevier, vol. 29(4), pages 1328-1337.
    10. Miao-Yu Tsai & Chuhsing Hsiao, 2008. "Computation of reference Bayesian inference for variance components in longitudinal studies," Computational Statistics, Springer, vol. 23(4), pages 587-604, October.
    11. Yeojin Chung & Sophia Rabe-Hesketh & Vincent Dorie & Andrew Gelman & Jingchen Liu, 2013. "A Nondegenerate Penalized Likelihood Estimator for Variance Parameters in Multilevel Models," Psychometrika, Springer;The Psychometric Society, vol. 78(4), pages 685-709, October.
    12. Benjamin R. Saville & Amy H. Herring, 2009. "Testing Random Effects in the Linear Mixed Model Using Approximate Bayes Factors," Biometrics, The International Biometric Society, vol. 65(2), pages 369-376, June.
    13. Sonja Greven & Ciprian Crainiceanu, 2013. "On likelihood ratio testing for penalized splines," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 97(4), pages 387-402, October.
    14. Long Qu & Tobias Guennel & Scott L. Marshall, 2013. "Linear Score Tests for Variance Components in Linear Mixed Models and Applications to Genetic Association Studies," Biometrics, The International Biometric Society, vol. 69(4), pages 883-892, December.
    15. Oliver E. Lee & Thomas M. Braun, 2012. "Permutation Tests for Random Effects in Linear Mixed Models," Biometrics, The International Biometric Society, vol. 68(2), pages 486-493, June.
    16. Benjamin Säfken & Thomas Kneib, 2020. "Conditional covariance penalties for mixed models," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 47(3), pages 990-1010, September.
    17. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    18. Sanjoy Sinha & Abdus Sattar, 2015. "Inference in semi-parametric spline mixed models for longitudinal data," METRON, Springer;Sapienza Università di Roma, vol. 73(3), pages 377-395, December.
    19. Chen, Haiqiang & Fang, Ying & Li, Yingxing, 2015. "Estimation And Inference For Varying-Coefficient Models With Nonstationary Regressors Using Penalized Splines," Econometric Theory, Cambridge University Press, vol. 31(4), pages 753-777, August.
    20. repec:wyi:journl:002195 is not listed on IDEAS
    21. Ferreira, Marco A.R. & Porter, Erica M. & Franck, Christopher T., 2021. "Fast and scalable computations for Gaussian hierarchical models with intrinsic conditional autoregressive spatial random effects," Computational Statistics & Data Analysis, Elsevier, vol. 162(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:stapro:v:98:y:2015:i:c:p:73-78. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/622892/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.