IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v37y2022i1d10.1007_s00180-021-01121-3.html
   My bibliography  Save this article

A hierarchical clustering method for random intervals based on a similarity measure

Author

Listed:
  • Ana Belén Ramos-Guajardo

    (University of Oviedo)

Abstract

A new clustering method for random intervals that are measured in the same units over the same group of individuals is provided. It takes into account the similarity degree between the expected values of the random intervals that can be analyzed by means of a two-sample similarity bootstrap test. Thus, the expectations of each pair of random intervals are compared through that test and a p-value matrix is finally obtained. The suggested clustering algorithm considers such a matrix where each p-value can be seen at the same time as a kind of similarity between the random intervals. The algorithm is iterative and includes an objective stopping criterion that leads to statistically similar clusters that are different from each other. Some simulations to show the empirical performance of the proposal are developed and the approach is applied to two real-life situations.

Suggested Citation

  • Ana Belén Ramos-Guajardo, 2022. "A hierarchical clustering method for random intervals based on a similarity measure," Computational Statistics, Springer, vol. 37(1), pages 229-261, March.
  • Handle: RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01121-3
    DOI: 10.1007/s00180-021-01121-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-021-01121-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-021-01121-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Thierry Magnac & Eric Maurin, 2008. "Partial Identification in Monotone Binary Models: Discrete Regressors and Interval Data," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 75(3), pages 835-864.
    2. Blanco-Fernández, Angela & Corral, Norberto & González-Rodríguez, Gil, 2011. "Estimation of a flexible simple linear model for interval data based on set arithmetic," Computational Statistics & Data Analysis, Elsevier, vol. 55(9), pages 2568-2578, September.
    3. Billard L. & Diday E., 2003. "From the Statistics of Data to the Statistics of Knowledge: Symbolic Data Analysis," Journal of the American Statistical Association, American Statistical Association, vol. 98, pages 470-487, January.
    4. Michael G. Hudgens, 2005. "On nonparametric maximum likelihood estimation with interval censoring and left truncation," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(4), pages 573-587, September.
    5. Horowitz, Joel L. & Manski, Charles F., 2006. "Identification and estimation of statistical functionals using incomplete data," Journal of Econometrics, Elsevier, vol. 132(2), pages 445-459, June.
    6. Seongoh Park & Johan Lim & Hyejeong Choi & Minjung Kwak, 2020. "Clustering of longitudinal interval-valued data via mixture distribution under covariance separability," Journal of Applied Statistics, Taylor & Francis Journals, vol. 47(10), pages 1739-1756, July.
    7. Chavent, Marie & Kuentz-Simonet, Vanessa & Liquet, Benoît & Saracco, Jérôme, 2012. "ClustOfVar: An R Package for the Clustering of Variables," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 50(i13).
    8. Francisco Carvalho & Paula Brito & Hans-Hermann Bock, 2006. "Dynamic clustering for interval data based on L 2 distance," Computational Statistics, Springer, vol. 21(2), pages 231-250, June.
    9. Kojadinovic, Ivan, 2004. "Agglomerative hierarchical clustering of continuous variables based on mutual information," Computational Statistics & Data Analysis, Elsevier, vol. 46(2), pages 269-294, June.
    10. Pierpaolo D’Urso & Livia Giovanni & Riccardo Massari, 2015. "Trimmed fuzzy clustering for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 21-40, March.
    11. González-Rodríguez, Gil & Colubi, Ana & Gil, María Ángeles, 2012. "Fuzzy data treated as functional data: A one-way ANOVA test approach," Computational Statistics & Data Analysis, Elsevier, vol. 56(4), pages 943-955.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. A. Pedro Duarte Silva & Peter Filzmoser & Paula Brito, 2018. "Outlier detection in interval data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 12(3), pages 785-822, September.
    2. Paolo Giordani, 2015. "Lasso-constrained regression analysis for interval-valued data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 9(1), pages 5-19, March.
    3. Hao, Peng & Guo, Junpeng, 2017. "Constrained center and range joint model for interval-valued symbolic data regression," Computational Statistics & Data Analysis, Elsevier, vol. 116(C), pages 106-138.
    4. Fei Liu & L. Billard, 2022. "Partition of Interval-Valued Observations Using Regression," Journal of Classification, Springer;The Classification Society, vol. 39(1), pages 55-77, March.
    5. Tatiana Komarova & Denis Nekipelov & Evgeny Yakovlev, 2018. "Identification, data combination, and the risk of disclosure," Quantitative Economics, Econometric Society, vol. 9(1), pages 395-440, March.
    6. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt's exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759, July.
    7. Colubi, Ana & Ramos-Guajardo, Ana Belén, 2023. "Fuzzy sets and (fuzzy) random sets in Econometrics and Statistics," Econometrics and Statistics, Elsevier, vol. 26(C), pages 84-98.
    8. Yan Sun & Guanghua Lian & Zudi Lu & Jennifer Loveland & Isaac Blackhurst, 2020. "Modeling the Variance of Return Intervals Toward Volatility Prediction," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(4), pages 492-519, July.
    9. Nataša Kejžar & Simona Korenjak-Černe & Vladimir Batagelj, 2021. "Clustering of modal-valued symbolic data," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 15(2), pages 513-541, June.
    10. Maia, André Luis Santiago & de Carvalho, Francisco de A.T., 2011. "Holt’s exponential smoothing and neural network models for forecasting interval-valued time series," International Journal of Forecasting, Elsevier, vol. 27(3), pages 740-759.
    11. Guo, Junpeng & Li, Wenhua & Li, Chenhua & Gao, Sa, 2012. "Standardization of interval symbolic data based on the empirical descriptive statistics," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 602-610.
    12. Cheolwoo Park & Yongho Jeon & Kee-Hoon Kang, 2016. "An exploratory data analysis in scale-space for interval-valued data," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2643-2660, October.
    13. Angela Blanco-Fernández & Peter Winker, 2016. "Data generation processes and statistical management of interval data," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 100(4), pages 475-494, October.
    14. Wei Yang & Ai Han & Yongmiao Hong & Shouyang Wang, 2016. "Analysis of crisis impact on crude oil prices: a new approach with interval time series modelling," Quantitative Finance, Taylor & Francis Journals, vol. 16(12), pages 1917-1928, December.
    15. Pierpaolo D’Urso & María Ángeles Gil, 2017. "Fuzzy data analysis and classification," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 11(4), pages 645-657, December.
    16. Eufr�sio de A. Lima Neto & Ulisses U. dos Anjos, 2015. "Regression model for interval-valued variables based on copulas," Journal of Applied Statistics, Taylor & Francis Journals, vol. 42(9), pages 2010-2029, September.
    17. M. Rosário Oliveira & Margarida Azeitona & António Pacheco & Rui Valadas, 2022. "Association measures for interval variables," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 16(3), pages 491-520, September.
    18. Miguel de Carvalho & Gabriel Martos, 2022. "Modeling interval trendlines: Symbolic singular spectrum analysis for interval time series," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 41(1), pages 167-180, January.
    19. Christian Bontemps & Thierry Magnac & Eric Maurin, 2012. "Set Identified Linear Models," Econometrica, Econometric Society, vol. 80(3), pages 1129-1155, May.
    20. Chen, Le-Yu & Lee, Sokbae, 2018. "Best subset binary prediction," Journal of Econometrics, Elsevier, vol. 206(1), pages 39-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:37:y:2022:i:1:d:10.1007_s00180-021-01121-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.