IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v233y2023i1p66-87.html
   My bibliography  Save this article

Shrinkage estimation of network spillovers with factor structured errors

Author

Listed:
  • Higgins, Ayden
  • Martellosio, Federico

Abstract

This paper explores the estimation of a panel data model with cross-sectional interaction that is flexible both in its approach to specifying the network of connections between cross-sectional units, and in controlling for unobserved heterogeneity. It is assumed that there are different sources of information available on a network, which can be represented in the form of multiple weights matrices. These matrices may reflect observed links, different measures of connectivity, groupings or other network structures, and the number of matrices may be increasing with sample size. A penalised quasi-maximum likelihood estimator is proposed which aims to alleviate the risk of network misspecification by shrinking the coefficients of irrelevant weights matrices to exactly zero. Moreover, controlling for unobserved factors in estimation provides a safeguard against the misspecification that might arise from unobserved heterogeneity. The asymptotic properties of the estimator are derived in a framework where the true value of each parameter remains fixed as the total number of parameters increases. A Monte Carlo simulation is used to assess finite sample performance, and in an empirical application the method is applied to study the prevalence of network spillovers in determining growth rates across countries.

Suggested Citation

  • Higgins, Ayden & Martellosio, Federico, 2023. "Shrinkage estimation of network spillovers with factor structured errors," Journal of Econometrics, Elsevier, vol. 233(1), pages 66-87.
  • Handle: RePEc:eee:econom:v:233:y:2023:i:1:p:66-87
    DOI: 10.1016/j.jeconom.2021.11.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407621003080
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2021.11.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zou, Hui, 2006. "The Adaptive Lasso and Its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 101, pages 1418-1429, December.
    2. Lawrence E. Blume & William A. Brock & Steven N. Durlauf & Rajshri Jayaraman, 2015. "Linear Social Interactions Models," Journal of Political Economy, University of Chicago Press, vol. 123(2), pages 444-496.
    3. Bai, Jushan & Liao, Yuan, 2017. "Inferences in panel data with interactive effects using large covariance matrices," Journal of Econometrics, Elsevier, vol. 200(1), pages 59-78.
    4. Yu, Jihai & de Jong, Robert & Lee, Lung-fei, 2008. "Quasi-maximum likelihood estimators for spatial dynamic panel data with fixed effects when both n and T are large," Journal of Econometrics, Elsevier, vol. 146(1), pages 118-134, September.
    5. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    6. Bramoullé, Yann & Djebbari, Habiba & Fortin, Bernard, 2009. "Identification of peer effects through social networks," Journal of Econometrics, Elsevier, vol. 150(1), pages 41-55, May.
    7. Lee, Lung-fei & Yu, Jihai, 2010. "Estimation of spatial autoregressive panel data models with fixed effects," Journal of Econometrics, Elsevier, vol. 154(2), pages 165-185, February.
    8. Jushan Bai & Serena Ng, 2002. "Determining the Number of Factors in Approximate Factor Models," Econometrica, Econometric Society, vol. 70(1), pages 191-221, January.
    9. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    10. Gupta, Abhimanyu & Robinson, Peter M., 2018. "Pseudo maximum likelihood estimation of spatial autoregressive models with increasing dimension," Journal of Econometrics, Elsevier, vol. 202(1), pages 92-107.
    11. Hyungsik Roger Moon & Martin Weidner, 2015. "Linear Regression for Panel With Unknown Number of Factors as Interactive Fixed Effects," Econometrica, Econometric Society, vol. 83(4), pages 1543-1579, July.
    12. Li, Liyao & Yang, Zhenlin, 2021. "Spatial dynamic panel data models with correlated random effects," Journal of Econometrics, Elsevier, vol. 221(2), pages 424-454.
    13. Zhang, Xinyu & Yu, Jihai, 2018. "Spatial weights matrix selection and model averaging for spatial autoregressive models," Journal of Econometrics, Elsevier, vol. 203(1), pages 1-18.
    14. Moon, Hyungsik Roger & Weidner, Martin, 2017. "Dynamic Linear Panel Regression Models With Interactive Fixed Effects," Econometric Theory, Cambridge University Press, vol. 33(1), pages 158-195, February.
    15. Gupta, Abhimanyu & Robinson, Peter M., 2015. "Inference on higher-order spatial autoregressive models with increasingly many parameters," Journal of Econometrics, Elsevier, vol. 186(1), pages 19-31.
    16. Leeb, Hannes & Pötscher, Benedikt M., 2005. "Model Selection And Inference: Facts And Fiction," Econometric Theory, Cambridge University Press, vol. 21(1), pages 21-59, February.
    17. Lee, Lung-fei, 2007. "Identification and estimation of econometric models with group interactions, contextual factors and fixed effects," Journal of Econometrics, Elsevier, vol. 140(2), pages 333-374, October.
    18. Hsiao, Cheng, 2018. "Panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 645-673.
    19. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    20. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    21. Steven N. Durlauf & Paul A. Johnson & Jonathan R. W. Temple, 2009. "The Methods of Growth Econometrics," Palgrave Macmillan Books, in: Terence C. Mills & Kerry Patterson (ed.), Palgrave Handbook of Econometrics, chapter 24, pages 1119-1179, Palgrave Macmillan.
    22. Jushan Bai, 2009. "Panel Data Models With Interactive Fixed Effects," Econometrica, Econometric Society, vol. 77(4), pages 1229-1279, July.
    23. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    24. Lung-fei Lee & Xiaodong Liu & Xu Lin, 2010. "Specification and estimation of social interaction models with network structures," Econometrics Journal, Royal Economic Society, vol. 13(2), pages 145-176, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hao Zeng & Wei Zhong & Xingbai Xu, 2024. "Transfer Learning for Spatial Autoregressive Models with Application to U.S. Presidential Election Prediction," Papers 2405.15600, arXiv.org, revised Sep 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ayden Higgins & Federico Martellosio, 2019. "Shrinkage Estimation of Network Spillovers with Factor Structured Errors," Papers 1909.02823, arXiv.org, revised Nov 2021.
    2. Bai, Jushan & Li, Kunpeng, 2021. "Dynamic spatial panel data models with common shocks," Journal of Econometrics, Elsevier, vol. 224(1), pages 134-160.
    3. Guowei Cui & Vasilis Sarafidis & Takashi Yamagata, 2023. "IV estimation of spatial dynamic panels with interactive effects: large sample theory and an application on bank attitude towards risk," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 124-146.
    4. Ando, Tomohiro & Li, Kunpeng & Lu, Lina, 2023. "A spatial panel quantile model with unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 232(1), pages 191-213.
    5. Guido M. Kuersteiner & Ingmar R. Prucha, 2020. "Dynamic Spatial Panel Models: Networks, Common Shocks, and Sequential Exogeneity," Econometrica, Econometric Society, vol. 88(5), pages 2109-2146, September.
    6. Shi, Wei & Lee, Lung-fei, 2017. "Spatial dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 197(2), pages 323-347.
    7. Kwok, Hon Ho, 2019. "Identification and estimation of linear social interaction models," Journal of Econometrics, Elsevier, vol. 210(2), pages 434-458.
    8. Shi, Wei & Lee, Lung-fei, 2018. "A spatial panel data model with time varying endogenous weights matrices and common factors," Regional Science and Urban Economics, Elsevier, vol. 72(C), pages 6-34.
    9. Lu, Xun & Su, Liangjun, 2016. "Shrinkage estimation of dynamic panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 190(1), pages 148-175.
    10. Lina Lu, 2017. "Simultaneous Spatial Panel Data Models with Common Shocks," Supervisory Research and Analysis Working Papers RPA 17-3, Federal Reserve Bank of Boston.
    11. Ye, Xiaoqing & Xu, Juan & Wu, Xiangjun, 2018. "Estimation of an unbalanced panel data Tobit model with interactive effects," Journal of choice modelling, Elsevier, vol. 28(C), pages 108-123.
    12. Bai, Jushan, 2024. "Likelihood approach to dynamic panel models with interactive effects," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Liu, Xiaodong & Prucha, Ingmar R., 2018. "A robust test for network generated dependence," Journal of Econometrics, Elsevier, vol. 207(1), pages 92-113.
    14. Wei Shi & Lung-fei Lee, 2018. "The effects of gun control on crimes: a spatial interactive fixed effects approach," Empirical Economics, Springer, vol. 55(1), pages 233-263, August.
    15. Hong, Shengjie & Su, Liangjun & Jiang, Tao, 2023. "Profile GMM estimation of panel data models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 235(2), pages 927-948.
    16. Freeman, Hugo & Weidner, Martin, 2023. "Linear panel regressions with two-way unobserved heterogeneity," Journal of Econometrics, Elsevier, vol. 237(1).
    17. Cheng Hsiao & Yimeng Xie & Qiankun Zhou, 2021. "Factor dimension determination for panel interactive effects models: an orthogonal projection approach," Computational Statistics, Springer, vol. 36(2), pages 1481-1497, June.
    18. Chen, Jia & Shin, Yongcheol & Zheng, Chaowen, 2022. "Estimation and inference in heterogeneous spatial panels with a multifactor error structure," Journal of Econometrics, Elsevier, vol. 229(1), pages 55-79.
    19. Martellosio, Federico & Hillier, Grant, 2020. "Adjusted QMLE for the spatial autoregressive parameter," Journal of Econometrics, Elsevier, vol. 219(2), pages 488-506.
    20. Manuela Fritz, 2022. "Wave after wave: determining the temporal lag in Covid-19 infections and deaths using spatial panel data from Germany," Journal of Spatial Econometrics, Springer, vol. 3(1), pages 1-30, December.

    More about this item

    Keywords

    Interactive fixed effects; High-dimensional estimation; Panel models; Penalised quasi-likelihood; Social network models;
    All these keywords.

    JEL classification:

    • C13 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Estimation: General
    • C23 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Models with Panel Data; Spatio-temporal Models
    • C51 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Model Construction and Estimation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:233:y:2023:i:1:p:66-87. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.