IDEAS home Printed from https://ideas.repec.org/a/spr/compst/v32y2017i2d10.1007_s00180-016-0676-0.html
   My bibliography  Save this article

Uncertainty quantification for functional dependent random variables

Author

Listed:
  • Simon Nanty

    (CEA, DEN
    Université Joseph Fourier and INRIA)

  • Céline Helbert

    (Université de Lyon)

  • Amandine Marrel

    (CEA, DEN)

  • Nadia Pérot

    (CEA, DEN)

  • Clémentine Prieur

    (Université Joseph Fourier and INRIA)

Abstract

This paper proposes a new methodology to model uncertainties associated with functional random variables. This methodology allows to deal simultaneously with several dependent functional variables and to address the specific case where these variables are linked to a vectorial variable, called covariate. In this case, the proposed uncertainty modelling methodology has two objectives: to retain both the most important features of the functional variables and their features which are the most correlated to the covariate. This methodology is composed of two steps. First, the functional variables are decomposed on a functional basis. To deal simultaneously with several dependent functional variables, a Simultaneous Partial Least Squares algorithm is proposed to estimate this basis. Second, the joint probability density function of the coefficients selected in the decomposition is modelled by a Gaussian mixture model. A new sparse method based on a Lasso penalization algorithm is proposed to estimate the Gaussian mixture model parameters and reduce their number. Several criteria are introduced to assess the methodology performance: its ability to approximate the functional variables probability distribution, their dependence structure and their features which explain the covariate. Finally, the whole methodology is applied on a simulated example and on a nuclear reliability test case.

Suggested Citation

  • Simon Nanty & Céline Helbert & Amandine Marrel & Nadia Pérot & Clémentine Prieur, 2017. "Uncertainty quantification for functional dependent random variables," Computational Statistics, Springer, vol. 32(2), pages 559-583, June.
  • Handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0676-0
    DOI: 10.1007/s00180-016-0676-0
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00180-016-0676-0
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00180-016-0676-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jacob Bien & Robert J. Tibshirani, 2011. "Sparse estimation of a covariance matrix," Biometrika, Biometrika Trust, vol. 98(4), pages 807-820.
    2. Bongiorno, Enea G. & Goia, Aldo, 2016. "Classification methods for Hilbert data based on surrogate density," Computational Statistics & Data Analysis, Elsevier, vol. 99(C), pages 204-222.
    3. Marrel, Amandine & Iooss, Bertrand & Van Dorpe, François & Volkova, Elena, 2008. "An efficient methodology for modeling complex computer codes with Gaussian processes," Computational Statistics & Data Analysis, Elsevier, vol. 52(10), pages 4731-4744, June.
    4. Anstett-Collin, F. & Goffart, J. & Mara, T. & Denis-Vidal, L., 2015. "Sensitivity analysis of complex models: Coping with dynamic and static inputs," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 268-275.
    5. Helton, J.C. & Johnson, J.D. & Sallaberry, C.J. & Storlie, C.B., 2006. "Survey of sampling-based methods for uncertainty and sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1175-1209.
    6. Jeremy Oakley, 2002. "Bayesian inference for the uncertainty distribution of computer model outputs," Biometrika, Biometrika Trust, vol. 89(4), pages 769-784, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sophie Marque-Pucheu & Guillaume Perrin & Josselin Garnier, 2020. "An efficient dimension reduction for the Gaussian process emulation of two nested codes with functional outputs," Computational Statistics, Springer, vol. 35(3), pages 1059-1099, September.
    2. Hu, Zhen & Mahadevan, Sankaran, 2019. "Probability models for data-Driven global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 40-57.
    3. Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Heredia, María Belén & Prieur, Clémentine & Eckert, Nicolas, 2021. "Nonparametric estimation of aggregated Sobol’ indices: Application to a depth averaged snow avalanche model," Reliability Engineering and System Safety, Elsevier, vol. 212(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Storlie, Curtis B. & Reich, Brian J. & Helton, Jon C. & Swiler, Laura P. & Sallaberry, Cedric J., 2013. "Analysis of computationally demanding models with continuous and categorical inputs," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 30-41.
    2. McFarland, John & DeCarlo, Erin, 2020. "A Monte Carlo framework for probabilistic analysis and variance decomposition with distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Betancourt, José & Bachoc, François & Klein, Thierry & Idier, Déborah & Pedreros, Rodrigo & Rohmer, Jérémy, 2020. "Gaussian process metamodeling of functional-input code for coastal flood hazard assessment," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Marrel, Amandine & Iooss, Bertrand & Laurent, Béatrice & Roustant, Olivier, 2009. "Calculations of Sobol indices for the Gaussian process metamodel," Reliability Engineering and System Safety, Elsevier, vol. 94(3), pages 742-751.
    5. Storlie, Curtis B. & Swiler, Laura P. & Helton, Jon C. & Sallaberry, Cedric J., 2009. "Implementation and evaluation of nonparametric regression procedures for sensitivity analysis of computationally demanding models," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1735-1763.
    6. Marrel, A. & Marie, N. & De Lozzo, M., 2015. "Advanced surrogate model and sensitivity analysis methods for sodium fast reactor accident assessment," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 232-241.
    7. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    8. Helton, Jon C. & Johnson, Jay D. & Sallaberry, Cédric J., 2011. "Quantification of margins and uncertainties: Example analyses from reactor safety and radioactive waste disposal involving the separation of aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1014-1033.
    9. Plischke, Elmar & Borgonovo, Emanuele, 2019. "Copula theory and probabilistic sensitivity analysis: Is there a connection?," European Journal of Operational Research, Elsevier, vol. 277(3), pages 1046-1059.
    10. Jakub Bijak & Jason D. Hilton & Eric Silverman & Viet Dung Cao, 2013. "Reforging the Wedding Ring," Demographic Research, Max Planck Institute for Demographic Research, Rostock, Germany, vol. 29(27), pages 729-766.
    11. Saurbayeva, Assemgul & Memon, Shazim Ali & Kim, Jong, 2023. "Integrated multi-stage sensitivity analysis and multi-objective optimization approach for PCM integrated residential buildings in different climate zones," Energy, Elsevier, vol. 278(PB).
    12. Donghyeon Yoo & Jinhwan Park & Jaemin Moon & Changwan Kim, 2021. "Reliability-Based Design Optimization for Reducing the Performance Failure and Maximizing the Specific Energy of Lithium-Ion Batteries Considering Manufacturing Uncertainty of Porous Electrodes," Energies, MDPI, vol. 14(19), pages 1-15, September.
    13. Paola Stolfi & Mauro Bernardi & Lea Petrella, 2016. "Multivariate Method Of Simulated Quantiles," Departmental Working Papers of Economics - University 'Roma Tre' 0212, Department of Economics - University Roma Tre.
    14. Tian, Wei & Song, Jitian & Li, Zhanyong & de Wilde, Pieter, 2014. "Bootstrap techniques for sensitivity analysis and model selection in building thermal performance analysis," Applied Energy, Elsevier, vol. 135(C), pages 320-328.
    15. Javier Urquizo & Carlos Calderón & Philip James, 2017. "Using a Local Framework Combining Principal Component Regression and Monte Carlo Simulation for Uncertainty and Sensitivity Analysis of a Domestic Energy Model in Sub-City Areas," Energies, MDPI, vol. 10(12), pages 1-22, December.
    16. Veiga, Sébastien Da & Marrel, Amandine, 2020. "Gaussian process regression with linear inequality constraints," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    17. Benjamin Poignard & Manabu Asai, 2023. "Estimation of high-dimensional vector autoregression via sparse precision matrix," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 307-326.
    18. Petropoulos, G. & Wooster, M.J. & Carlson, T.N. & Kennedy, M.C. & Scholze, M., 2009. "A global Bayesian sensitivity analysis of the 1d SimSphere soil–vegetation–atmospheric transfer (SVAT) model using Gaussian model emulation," Ecological Modelling, Elsevier, vol. 220(19), pages 2427-2440.
    19. Viet Anh Nguyen & Daniel Kuhn & Peyman Mohajerin Esfahani, 2018. "Distributionally Robust Inverse Covariance Estimation: The Wasserstein Shrinkage Estimator," Papers 1805.07194, arXiv.org.
    20. Cao, Jiaokun & Du, Farong & Ding, Shuiting, 2013. "Global sensitivity analysis for dynamic systems with stochastic input processes," Reliability Engineering and System Safety, Elsevier, vol. 118(C), pages 106-117.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:compst:v:32:y:2017:i:2:d:10.1007_s00180-016-0676-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.